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1. Introduction to QCD

 QCD (Quantum Chromodynamics)

 Describes properties of
 Nucleons (Proton, Neutoron)

 (Mesons, Baryons =Hadrons) 

 Strong interaction 

 from more fundamental                    

particles Quarks and Gluons
 Dynamics by exchanging gluons.

 e.g. QED (Quantum Electrodynamics)

 Molecules/Atoms from nucleons/electrons and 

photons
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1. Introduction to QCD (contd’)

 QCD (Quantum Chromodynamics)

 Quantum Field theory (QFT)
 Quark Field and Gluon Field with space-time index.  They 

have color charge (based on SU(3)).

(Electric charge based on U(1))

 Gluon action : similar to Maxwell’s equation (photon action), 

Gluon carries its color charge. 

(photon does not have electric charge.)

 Quark action:  similar to electron’s equation (Dirac’s 

equation/action)

Quark carries color charge.  (electron has electric charge)

 Quatntized by Feynman’s path-integral. Partition function 

with action (similar to statistical physics).
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2. Lattice QCD

 Lattice QCD [K.G.Wilson (1974)]

 4D Space Time  =>  4D Lattice Box

 Fields on Discretized Space-Time

 Integration on Field Shape => Integration on many var’s.
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2. Lattice QCD (cont’d)

 Lattice QCD [K.G.Wilson (1974)]

 LQCD Partition function

 Integration on many var’s.

 Observable: O

 Similar to Statistical Physics
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2. Lattice QCD (cont’d)

 Lattice QCD [K.G.Wilson (1974)]

 Monte Carlo Importance Sampling

 Markov chain Monte Carlo to generate sequence of U

 Statistical Average

 To generate the Markov chain of U (gluon field)  
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2. Lattice QCD (cont’d)

 Lattice QCD
 HMC algorithm [Duane, Kennedy, Pendleton, Roweth(1987)]

 The most time consuming part of the HMC algorithm is the 

inversion of quark matrix D[U].

 Molecular Dynamics (MD) evolution is used to generate a 

sequence of U (Markov chain) in the HMC. This requires huge 

number of solution of the linear equations.

 To get better statistics, we need O(100) configurations of U.  This 

needs O(1000)  the HMC cycles.   In each HMC cycle, MD needs 

O(100) time steps.  At each time step we need two inversion of 

D[U].  In total we have to invert D[U] by 2x100x1000x100 = 

O(10^7) times!.  

 Speeding up the large scale linear equations solver is the key of 

LQCD simulations.
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2. Lattice QCD (cont’d)

 Lattice QCD
 Hadron masses from LQCD  (~2010).

 Proton size                              =  1~2fm   (experimental)

 Typical Lattice size                L = 16~32

 Typical Lattice spacing          a = 0.05~0.1 fm

 Typical Lattice extent           La = 2 ~ 5 fm

 Machines:

 Supercomputers, BG/L/P, SX, SR, VPP.. , Custom made PC cluster etc.

 Uses O(10) TFlops machines for several years.
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3. LQCD with GPU/Accelerator

 For all computation in HMC, Parallel Supercomputers are 

usually employed, where 4D space-time is domain-

decomposed and the task is distributed to each node.

 (O(10)Tflops x 2-3 years) machine can now well reproduce 

single hadron in the computer.

 But such machines are still too expensive… for a novice 

researcher or to do a trial computer experiment …..

 Improvements on the algorithm and computer arch.s are 

highly desired.

 GPGPU and Accelerator are the candidate to get more 

efficient and economical machines for LQCD. 

 Speeding up the quark matrix linear solver D[U]x=b.
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3. LQCD with GPU/Accelerator (cont’d)

 LQCD  experience on GPGPU/Accelerator

 CELL B.E.  (PlayStation3)

For details of Lattice QFT on CELL .B.E.

see Next talk by Motoki.
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3. LQCD with GPU/Accelerator (cont’d)

 GPGPU
 “Lattice QCD as a video game”,

G.I.Egri, Z.Fodor, S.D.Katz, D.Nogradi, 

K.K.Szabo, (2006)hep-lat/0611022.

 NVIDIA G80 arch.  > 300 GFlops(SP)

 Lattice Wilson kernel   > 30 GFlops

 Difficult to program using Graphic API  

(OpenGL)

 CUDA version (2008~) with new GPU G200 arch.

 Now CUDA (a C/C++ simple extension) is avairable.

 Easy to learn, but requires hardware/memory model knowledge

30GFlops

 C. Rebbi, “Blastigng Through Lattice Calc. 

using CUDA”, Lat08.

 F. Di Renzo, “GPU computing for 2-d spin 

systems:CUDA vs OpenGL”, Lat08

And many studies….

M. Clark et al. Work shop@CCS, 

10-12 March, 2009

They got   140 Gflops (SP) for 

Wilson-D[U] computation using

Nvidia GTX280.

Quark solver spped (2006)



 GPGPU
 AMD GPU,  Firestream, OpenCL ….

 applications to LQCD

 “Pseudo-random number generators for Monte Carlo simulations 

on Graphics Processing Units”, V.Demchik, hep-lat/1003.1898.

 “Monte Carlo simulations on Graphics Processing Unists”, 

V.Demchik and A.Strelchenko, hep-lat/0903.3053v2.

They employed CAL of ATI Stream.

 For more detailed GPGPU usage in LQCD 

application, see,                                                            

“QCD on GPUs: cost effective supercomputing”   

by M.A. Clark , Lattice2009, PoS(LAT2009)003 

[hep-lat/0912.2268].
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3. LQCD with GPU/Accelerator (cont’d)



3. LQCD with GPU/Accelerator (cont’d)

 GPU acceleration LQCD Kernel D[U]
 There are several discretization scheme for Dirac equation  

D.  (D : 4D 1st order diff. eq.)

 Wilson-Dirac discretization is the most generic one and 

used widely. And this has an important kernel called 

Hopping matrix, which is common to other discretization.

 Improvement on the Hopping kernel is very important.

 4D,  first-difference operator.

 sites connected by gluon U,  by which quark-color are mixed.

 quark-spin are mixed by Dirac’s gamma matrix        .

 Memory bandwidth intensive operation.

 Byte/Flop ~ 3 B (D.P.), ~1.5 B (S.P.)
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3. LQCD with GPU/Accelerator (cont’d)

 GPU acceleration LQCD Kernel D[U]

 My personal experience on the CUDA programming 

for the Hopping matrix (single GPU)

 We want to solve                         for x with given y and U.

 Lin. eq. with large sparse matrix :=>   Iterative solver (CG, 

BiCGStab etc..) 

 CUDA/GPU:   Single precision is very fast (Tflops), but we 

need double precision solution x.

 We use the mixed precision iterative solver (generalization 

of iterative refinment/Richardson iteration).  This 

guarantees double precision accuracy with almost S.P. 

arithmetics. 15
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3. LQCD with GPU/Accelerator (cont’d)

 GPU acceleration LQCD Kernel D[U]

 Mixed precision solver (strategy) [early proposal by Buttari,   

Dongrra, Langou, Langou, Luszczek, Kurzak (2007)]

 To solve Dx =b.

 The iterative refinement technique with full single precision 

solver (10^-7)  can solve  full double precision (10^-14) solution 

within  3-5 refinement iterations.

 Most computing time is spent in the S.P. solver.

 GPU is employed for Full single precision solver.
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3. LQCD with GPU/Accelerator (cont’d)

 GPU acceleration LQCD Kernel D[U]

 Hopping kernel CUDA code
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3. LQCD with GPU/Accelerator (cont’d)

 GPU acceleration LQCD Kernel D[U]

 Hopping kernel CUDA code

 Memory structure (data ordering)
 CUDA requires appropriate data ordering to get efficient memory bandwidth (like vector 

processor).

 We have to organize quark/gluon field component (spin and color) appropriately to match 

with CUDA memory alignment.

 Gluon field on single site in a direction, U,  has 3x3 complex elements.    (real*4)x18 = 

72bytes.  (not match16bytes alignment) We make use of SU(3) property of U to reduce data 

size. 3x2 complex elements are sufficient to reconstruct 3x3 U. (12 real*4)=48 bytes 

matches 16bytes alignment.

 We use y(3,4,T,Z,Y,X) (in Fortran array form) for quark field. 

 Complex-Color-Spin (3,4) indexes are encoded to float4 array.

 A part of TZ plane is assigned to CUDA thread parallelization. Remaining TZ,Y,X indexes 

are assigned to CUDA block parallelization.

 Texture fetching is used  to read memory (to cache data y and U)

 My understanding on the CUDA programming for LQCD 

application is:
 The CUDA thread parallelization is similar to vetorization on vector machines. 

 The block parallelization is similar to usual parallelization as MPI.  

 Calling the CUDA kernel is similar to MPI job submitting. 

 This strategy is very familiar  to lattice guys….
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４．Accelerating D[U]x=b solver 

using single GPU.

 Some results    [K.-I.I. and Y.Osaki, study in 2008]

 CPU: Core2Duo@3GHz, GPU: GeForce GTX 280,  CentOS.

 O(a)-improved Wilson-Dirac Ferimion  

 Red/black site prec’d,   Nested-BiCGStab (mixed prec. solver)

 Random gluon field U.

 Programming language

 HOST: Fortran90, BiCGStab,   BiCGStab calls single 

precision BiCGStab(GPU) as a preconditioner.

 GPU:  CUDA and C/C++. Single precision BiCGStab.

 Residual history, performance, Lattice Volume (space-time) 

dependence etc.
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4. Accelerating D[U]x=b solver using single GPU.

 Volume dependence of performance
 CPU(DP) only vs CPU(DP)+GPU(SP)

Small volume is not 

effective for GPU 

because parallelism is 

less than num of GPU 

cores(maximum 

threads).

For larger lattice we can 

achieve ~10x~20x 

speed up.
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4. Accelerating D[U]x=b solver using single GPU.

 Volume dependence of performance
 CPU performance (GFLops)

CPU off-cache performance 

is about 2GFlops (D.P.).

Hopping kernel requires 

about 3bytes/flop.

Effective memory 

bandwidth is about 

6GByte/s.

[Stream benchmark, Triad = 

7.7GB/s (meas’d)]

Lattice QCD is bandwidth 

intensive application.
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4. Accelerating D[U]x=b solver using single GPU.

 Volume dependence of performance
 GPU performance (GFLops(SP)) GPU performance reaches 

about 100 GFlops (S.P.).

Hopping kernel requires 

about 1.4bytes/flop.

Effective memory 

bandwidth is about 

140GByte/s!!  

[Bandwidth test : 115GB/s] 

Texture fetching and high 

memory bandwidth is very 

important to achieve this 

performance.

To get good efficiency large volume should be assigned to  single GPU.



4. Accelerating D[U]x=b solver using single GPU.

 Single GPU performance in LQCD.
 We found 10x-20x speed up using single GPU.

 16^4 lattice is enough for experimental simulations or 

other lattice simulations.

 But this is not our final goal because 16^4 is still 

small volume. (32^4 or larger is wanted).

 To enlarge lattice size, multiple GPU or parallel GPU 

usage is required.

 Application class:
(1) Multiple GPUs in a single node.

for other kind of lattice simulations

(2) Multiple GPU, Multiple nodes 
for O(10)Tflops machine for 32^4 lattice
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5. Many flavor lattice QCD with multiple 

GPUs on single node

 Schrodinger Functional (SF) simulation with Nf=10 

QCD.
 Class (1) Multiple GPUs in a single node application.

 Nf=10 QCD as a Technicolor model beyond Standard Model of 

elementary particles.

 16^4 lattice is enough.  Parameter searching type simulation.

 Simulation cost ∝ to number of quarks (10 quarks ⇔ Nf=10)                     

(Proton/neutron : Nf=2 or 3 QCD)

 The Technicolor model is not ye established experimentally. 

Numerical simulation helps the validation from theoretical side. 

But simulation cost is too high!! , and most computer time is 

given to normal Nf=2 QCD simulations…..

 GPU acceleration can helps this situation.

Multi-core and GPU computing workshop 
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5. Many flavor lattice QCD with multiple GPUs on single node

 Schrodinger Functional (SF) simulation with Nf=10 

QCD.

 We would like to simulate Nf=10 QCD more economically 

with GPU but

 Simulation cost ∝ to number of quarks (10 quarks ⇔ Nf=10)                     

(Proton/neutron : Nf=2 or 3 QCD).  5x heavy for Nf=10 than 

Nf=2.

 10 quarks are independent each others in the HMC 

algorithm. Solver for each quark can be done independently.

 Task can be distributed to each GPU (GPU = one quark) in 

single node.

 We tested Nf=10 SF QCD using 2GPUs in a 

node.
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5. Many flavor lattice QCD with multiple GPUs on single node

 Schrodinger Functional (SF) simulation with Nf=10 

QCD.

 Test on

 CPU: Core i7 920 (2.67GHz, 4 core)

 DP: 43 GFlops,  SP: 85 GFlops (peak)

 2xGPUs: 2 x (Nvidia GeForce GTX 285 )

 240 core @ 1.48 GHz,    SP: 710 GFlops (peak)

 OS, compiler

 CentOS 5.2 (Linux), Intel Fortran / C++,  CUDA 2.3.

 Cost,  BTO one PC box + 2GPU cards 

+ Intel compiler.
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5. Many flavor lattice QCD with multiple GPUs on single node

 Schrodinger Functional (SF) simulation with Nf=10 

QCD.

 Quark assignment (Using blocked BiCGStab solver algorithm)

 2GPU case

 GPU#1  = 3 solver calls,    GPU#2 = 2 solver calls, in a single 

MD step.

 1GPU case

 GPU#1 = 5 solver calls.
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Quark # 1,2

Quark # 3,4

Quark # 5,6

Quark # 7,8

Quark # 9,10

GPU # 2GPU # 1

Quark pair is always 

assigned to single external 

scalar field.

Quark # 1,2

Quark # 3,4

Quark # 5,6

Quark # 7,8

Quark # 9,10

GPU # 1

Ideally 40 %(3/5 = 0.6) Timing 

improvement is expected.
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 Effect of Multiple GPUs （1GPU⇒2GPU）

GPU solver  is calle 5 times in 

a CPU solver iteration.

Full timing :  4.06 sec

We observed 34% reduction in timing. 

(Ideally it should be 3/5= 0.6 =40% reduction) 

GPU solver is called 3 times for 

GPU#1 and 2 times for GPU#2. 

Full Timing : 2.69 sec
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 Timing comparison for single HMC step.

I omitted the details of CPU 

side improvements with multi-

core and mixed precision 

preconditioning.

We accomplished a factor 2-3 

improvement for CPU only. But 

this does not win GPU.

GPU is still faster than CPU 

code.

Using 2 GPUs we can 

accelerate (reduce 34%) in 

the timing.

~1/5

~2/3
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6. Towards parallel GPU 

computation

 To catch up the most advanced LQCD simulation we 

need true parallel GPU computation. O(10)Tflops 

machine for 32^4 lattice.

 Like in the parallel computation, the communication 

overhead is important.

 Unfortunately, GPUGPU direct communication 

device is not available in COTS GPU cards.

 Three steps, GPUCPUCPUGPU, 

communication is required in general.

 We investigated this overhead for LQCD application 

(D[U]x=b solver).
Multi-core and GPU computing workshop 
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6. Towards parallel GPU computation

 LQCD parallelization

 Data distribution:

 Data communication:

 Exchange edge site data

 Communication  hiding behind 

internal site computation. 

 Edge site computation after receiving 

the adjacent site data from next 

GPUs.
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6. Towards parallel GPU computation

 Parallel GPU implementation

 Some results  [K.-I.I. and Y.Osaki]

 Machine:  4PC’s  with

 CPU : Intel Core i7 920@2.67GHz  (4cores)

 GPU : GeForce GTX 285 × 2   (2GPUs in 1 node)

 Memory 6GBytes

 LAN Adapter : Intel Gigabit ET Quad Port Server. Poor 

man's network. (COTS, cheap)

 CentOS 5.4,  CUDA 2.3,  OpenMPI

 TCP/IP is too slow. Instead We employed Open-MX 

(Myrinet Express over Generic Ethernet Hardware) 

library [http://open-mx.gforge.inria.fr/].
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6. Towards parallel GPU computation

 Parallel GPU implementation

 Some results  [K.-I.I. and Y.Osaki]

 TCP/IP is too slow. Instead We employed Open-MX (Myrinet 

Express over Generic Ethernet Hardware) library [http://open-

mx.gforge.inria.fr/].

 Network performance.
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Max bandwidth  ~440 MB/s,  lowest latency 16usec (Open-MX)

~140 MB/s,                          24usec (TCP/IP)



Multi-core and GPU computing workshop 

@KIAS,Seoul,KOREA/2010/05/27-28

34

416

432

• kappa=0.126 • csw=1.0 • accuracy=10-14 • MixedPrecBiCGStab solver

6. Towards parallel GPU computation

 Strong Scaling test, solving  D[U]x=b

Parallel efficiency is always worse than 1.

NO IMPROVEMENT!

Slightly improved NO IMPROVEMENT!
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6. Towards parallel GPU computation

 Strong Scaling test

 For 16^4 lattice,  there is no improvement.

 Increasing num. of GPU and node, total time increase….

 For 32^4 lattice,  there is almost no improvement.

 Speed up by 30%:    1node1GPU => 1node 2GPU

 No speed up:             increasing nodes.

 Node-node communication (MPI) is still too slow.

0 0.5 1 1.5 2 2.5

calc

copy

0 0.2 0.4 0.6 0.8

calc

copy

0 5 10 15

calc

copy

0 2 4 6

calc

copy1CPU

2GPU

2CPU

4GPU

416 432

416 432

MPI(CPUCPU) time
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6. Towards parallel GPU computation

 Strong Scaling test

 We have tested:

 Simple domain decomposition with communication 

hiding.

 Gigabit Ethernet (x4 port) and Open-MX enhanced 

network.

 The network performance does not balance with the 

GPU speed. Communication hiding fails.

 We need Expensive network hardware (Infiniband, 

10GEthernet, True Myrinet…..)?

 Another approach:   Solver Preconditioning. Additive 

Schwarz Preconditioner.
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6. Towards parallel GPU computation

 Another approach:   Solver Preconditioning.

 Overlapped Additive Schwarz Preconditioner

 Schwarz iteration (common in fluid dynamics research?)

 Use this iteration as a preconditioner for iterative solver.

 Computation in each region Ω is completely independent.

 No communication is required. GPU supports this domain solver.

 Due to the overlapping domain region, total Flop count increases.

 Balance:  Reduction of communication overhead and Flop count 

increase. 
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 Overlapped Additive Schwarz Preconditioner

 Preliminary results  [K.-I.I. and Y.Osaki]
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6. Towards parallel GPU computation

416
432

Additive Schwarz preconditioner 

without overlapping is effective for 

larger lattice. Comm. Overhead is well 

reduced.



7. Summary

 Lattice QCD demands huge resource of 

computing power.

 Studying possibility of GPU acceleration has 

begun in LQCD community.

 Single/Multiple GPU/s in a node is very 

effective and attractive as shown here.

But, for more advanced QCD simulation,

 We need more survey on Parallel GPU 

computation and algorithm.
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