
Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

1

Accelerating lattice QCD

simulations using multiple

GPUs

Ken-Ichi Ishikawa

(Dept. of Physical Science,

Hiroshima Univ.)

Contents

 1. Introduction to QCD

 2. Lattice QCD

 3. LQCD with GPU/Accelerator

 4. Accelerating D[U]x=b solver using single

GPU

 5. Many flavor lattice QCD with multiple

GPUs on single node

 6. Towards parallel GPU computation

 7. Summary
Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

2

1. Introduction to QCD

 QCD (Quantum Chromodynamics)

 Describes properties of
 Nucleons (Proton, Neutoron)

 (Mesons, Baryons =Hadrons)

 Strong interaction

 from more fundamental

particles Quarks and Gluons
 Dynamics by exchanging gluons.

 e.g. QED (Quantum Electrodynamics)

 Molecules/Atoms from nucleons/electrons and

photons
Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

3

Proton (Nucleon)

Gluon

Quark

Helium

electron

photon
neutron

proton

1. Introduction to QCD (contd’)

 QCD (Quantum Chromodynamics)

 Quantum Field theory (QFT)
 Quark Field and Gluon Field with space-time index. They

have color charge (based on SU(3)).

(Electric charge based on U(1))

 Gluon action : similar to Maxwell’s equation (photon action),

Gluon carries its color charge.

(photon does not have electric charge.)

 Quark action: similar to electron’s equation (Dirac’s

equation/action)

Quark carries color charge. (electron has electric charge)

 Quatntized by Feynman’s path-integral. Partition function

with action (similar to statistical physics).

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

4

Proton (Nucleon)

Gluon

Quark

   ),,()(exp 4 ASASxdDDADZ quarkgluon

2. Lattice QCD

 Lattice QCD [K.G.Wilson (1974)]

 4D Space Time => 4D Lattice Box

 Fields on Discretized Space-Time

 Integration on Field Shape => Integration on many var’s.

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

5

Proton (Nucleon)

Gluon

Quark

Quark field Gluon field

)(x)(xA

Gluon fieldQuark field

)(nU
)(n

 DDAD   
nn

ndndndU)()()(
,



2. Lattice QCD (cont’d)

 Lattice QCD [K.G.Wilson (1974)]

 LQCD Partition function

 Integration on many var’s.

 Observable: O

 Similar to Statistical Physics

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

6

 

 







)(exp

),,(exp

USdU

USddUdZ

eff



action QCD of version dDiscretize :),,(US





)(

)(
1 USeffeUOdU
Z

O

., varsGrassmann on n integratio analytic 

Computation of hadron masses, etc…

Monte Carlo Integration

with Supercomputer!!

2. Lattice QCD (cont’d)

 Lattice QCD [K.G.Wilson (1974)]

 Monte Carlo Importance Sampling

 Markov chain Monte Carlo to generate sequence of U

 Statistical Average

 To generate the Markov chain of U (gluon field)

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

7





)(USeffedUZ 




)(
)(

1 USeffeUOdU
Z

O

)(
][Prob

USeffeU


 )()3()2()1(jUUUU





sampleN

j

sample

i

sample

NUO
N

O
1

)()()(
1

Hybrid Monte Carlo (HMC) algorithm
[Duane, Kennedy, Pendleton, Roweth(1987)]

is usually employed.

2. Lattice QCD (cont’d)

 Lattice QCD
 HMC algorithm [Duane, Kennedy, Pendleton, Roweth(1987)]

 The most time consuming part of the HMC algorithm is the

inversion of quark matrix D[U].

 Molecular Dynamics (MD) evolution is used to generate a

sequence of U (Markov chain) in the HMC. This requires huge

number of solution of the linear equations.

 To get better statistics, we need O(100) configurations of U. This

needs O(1000) the HMC cycles. In each HMC cycle, MD needs

O(100) time steps. At each time step we need two inversion of

D[U]. In total we have to invert D[U] by 2x100x1000x100 =

O(10^7) times!.

 Speeding up the large scale linear equations solver is the key of

LQCD simulations.

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

8

  xUDyyxUD
1

][][




  
1)(

][)(exp


 UDUSDDe gluon

USeff †

D : size > 106 x106

QCDOC@BNL,Col

ombiaU,UKQCD

2. Lattice QCD (cont’d)

 Lattice QCD
 Hadron masses from LQCD (~2010).

 Proton size = 1~2fm (experimental)

 Typical Lattice size L = 16~32

 Typical Lattice spacing a = 0.05~0.1 fm

 Typical Lattice extent La = 2 ~ 5 fm

 Machines:

 Supercomputers, BG/L/P, SX, SR, VPP.. , Custom made PC cluster etc.

 Uses O(10) TFlops machines for several years.

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

9

Jugene(BG/P)@JSC

BG/L@KEK

PACS-CS

@CCS,Tsukuba

Durr et al. (Budapest-Marseille-Wuppertal collab.

,“Ab Initio Determination of Light Hadron Masses”,

Science 322, 1224(2008).

TachyonII@KISTI

etc……

3. LQCD with GPU/Accelerator

 For all computation in HMC, Parallel Supercomputers are

usually employed, where 4D space-time is domain-

decomposed and the task is distributed to each node.

 (O(10)Tflops x 2-3 years) machine can now well reproduce

single hadron in the computer.

 But such machines are still too expensive… for a novice

researcher or to do a trial computer experiment …..

 Improvements on the algorithm and computer arch.s are

highly desired.

 GPGPU and Accelerator are the candidate to get more

efficient and economical machines for LQCD.

 Speeding up the quark matrix linear solver D[U]x=b.

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

10

3. LQCD with GPU/Accelerator (cont’d)

 LQCD experience on GPGPU/Accelerator

 CELL B.E. (PlayStation3)

For details of Lattice QFT on CELL .B.E.

see Next talk by Motoki.

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

11

Spary,Hill,Trew hep-lat/0804.3654;

S.Motoki & A. Nakamura Lat2007;

F.Belletti et al. LAT2007

A. Nobile et.al, DESY group,
QPACE project (QCD PArallel

computing on the CEll/B.E.)

12

3. LQCD with GPU/Accelerator (cont’d)

 GPGPU
 “Lattice QCD as a video game”,

G.I.Egri, Z.Fodor, S.D.Katz, D.Nogradi,

K.K.Szabo, (2006)hep-lat/0611022.

 NVIDIA G80 arch. > 300 GFlops(SP)

 Lattice Wilson kernel > 30 GFlops

 Difficult to program using Graphic API

(OpenGL)

 CUDA version (2008~) with new GPU G200 arch.

 Now CUDA (a C/C++ simple extension) is avairable.

 Easy to learn, but requires hardware/memory model knowledge

30GFlops

 C. Rebbi, “Blastigng Through Lattice Calc.

using CUDA”, Lat08.

 F. Di Renzo, “GPU computing for 2-d spin

systems:CUDA vs OpenGL”, Lat08

And many studies….

M. Clark et al. Work shop@CCS,

10-12 March, 2009

They got 140 Gflops (SP) for

Wilson-D[U] computation using

Nvidia GTX280.

Quark solver spped (2006)

 GPGPU
 AMD GPU, Firestream, OpenCL ….

 applications to LQCD

 “Pseudo-random number generators for Monte Carlo simulations

on Graphics Processing Units”, V.Demchik, hep-lat/1003.1898.

 “Monte Carlo simulations on Graphics Processing Unists”,

V.Demchik and A.Strelchenko, hep-lat/0903.3053v2.

They employed CAL of ATI Stream.

 For more detailed GPGPU usage in LQCD

application, see,

“QCD on GPUs: cost effective supercomputing”

by M.A. Clark , Lattice2009, PoS(LAT2009)003

[hep-lat/0912.2268].

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

13

3. LQCD with GPU/Accelerator (cont’d)

3. LQCD with GPU/Accelerator (cont’d)

 GPU acceleration LQCD Kernel D[U]
 There are several discretization scheme for Dirac equation

D. (D : 4D 1st order diff. eq.)

 Wilson-Dirac discretization is the most generic one and

used widely. And this has an important kernel called

Hopping matrix, which is common to other discretization.

 Improvement on the Hopping kernel is very important.

 4D, first-difference operator.

 sites connected by gluon U, by which quark-color are mixed.

 quark-spin are mixed by Dirac’s gamma matrix .

 Memory bandwidth intensive operation.

 Byte/Flop ~ 3 B (D.P.), ~1.5 B (S.P.)
Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

14

    

),(11),]([

)(1)(1),(

,

4

1

,ˆ,ˆ

mnMmnUD

mUnUmnM

mnW

mnmn















†

Hopping kernel (Hopping matrix)



3. LQCD with GPU/Accelerator (cont’d)

 GPU acceleration LQCD Kernel D[U]

 My personal experience on the CUDA programming

for the Hopping matrix (single GPU)

 We want to solve for x with given y and U.

 Lin. eq. with large sparse matrix :=> Iterative solver (CG,

BiCGStab etc..)

 CUDA/GPU: Single precision is very fast (Tflops), but we

need double precision solution x.

 We use the mixed precision iterative solver (generalization

of iterative refinment/Richardson iteration). This

guarantees double precision accuracy with almost S.P.

arithmetics. 15

    

),(11),]([

)(1)(1),(

,

4

1

,ˆ,ˆ

mnMmnUD

mUnUmnM

mnW

mnmn















†

Hopping kernel (Hopping matrix)

yxUDW ][

3. LQCD with GPU/Accelerator (cont’d)

 GPU acceleration LQCD Kernel D[U]

 Mixed precision solver (strategy) [early proposal by Buttari,

Dongrra, Langou, Langou, Luszczek, Kurzak (2007)]

 To solve Dx =b.

 The iterative refinement technique with full single precision

solver (10^-7) can solve full double precision (10^-14) solution

within 3-5 refinement iterations.

 Most computing time is spent in the S.P. solver.

 GPU is employed for Full single precision solver.

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

16

(1)] goto and [Check)5(

.]satisfy still and new[

prec.] [doble)4(

prec.] [doble)3(

prec.] [doble)2(

 precision] singlein [Solve (1)

]prec.) (double .satisfy and given [)0(

 |r|

Dxbrxr

qrr

vxx

Dvq

rDv

Dxbrxr













CPU task

HOST code

GPU task

CUDA code

3. LQCD with GPU/Accelerator (cont’d)

 GPU acceleration LQCD Kernel D[U]

 Hopping kernel CUDA code

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

17

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Grid for 16^3x16 lattice

Block for 1x1x16x16 lattice

Thread for single site

CUDA device structureHopping Lattice structure

Mapping between

CUDA structure and Lattice structure

3. LQCD with GPU/Accelerator (cont’d)

 GPU acceleration LQCD Kernel D[U]

 Hopping kernel CUDA code

 Memory structure (data ordering)
 CUDA requires appropriate data ordering to get efficient memory bandwidth (like vector

processor).

 We have to organize quark/gluon field component (spin and color) appropriately to match

with CUDA memory alignment.

 Gluon field on single site in a direction, U, has 3x3 complex elements. (real*4)x18 =

72bytes. (not match16bytes alignment) We make use of SU(3) property of U to reduce data

size. 3x2 complex elements are sufficient to reconstruct 3x3 U. (12 real*4)=48 bytes

matches 16bytes alignment.

 We use y(3,4,T,Z,Y,X) (in Fortran array form) for quark field.

 Complex-Color-Spin (3,4) indexes are encoded to float4 array.

 A part of TZ plane is assigned to CUDA thread parallelization. Remaining TZ,Y,X indexes

are assigned to CUDA block parallelization.

 Texture fetching is used to read memory (to cache data y and U)

 My understanding on the CUDA programming for LQCD

application is:
 The CUDA thread parallelization is similar to vetorization on vector machines.

 The block parallelization is similar to usual parallelization as MPI.

 Calling the CUDA kernel is similar to MPI job submitting.

 This strategy is very familiar to lattice guys….

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

18

V
a
ri
o
u
s
 t

u
n
in

g
 t

ip
s
 u

s
in

g
 C

U
D

A
 f

o
r

L
Q

C
D

!

19

４．Accelerating D[U]x=b solver

using single GPU.

 Some results [K.-I.I. and Y.Osaki, study in 2008]

 CPU: Core2Duo@3GHz, GPU: GeForce GTX 280, CentOS.

 O(a)-improved Wilson-Dirac Ferimion

 Red/black site prec’d, Nested-BiCGStab (mixed prec. solver)

 Random gluon field U.

 Programming language

 HOST: Fortran90, BiCGStab, BiCGStab calls single

precision BiCGStab(GPU) as a preconditioner.

 GPU: CUDA and C/C++. Single precision BiCGStab.

 Residual history, performance, Lattice Volume (space-time)

dependence etc.

20

4. Accelerating D[U]x=b solver using single GPU.

 Volume dependence of performance
 CPU(DP) only vs CPU(DP)+GPU(SP)

Small volume is not

effective for GPU

because parallelism is

less than num of GPU

cores(maximum

threads).

For larger lattice we can

achieve ~10x~20x

speed up.

21

4. Accelerating D[U]x=b solver using single GPU.

 Volume dependence of performance
 CPU performance (GFLops)

CPU off-cache performance

is about 2GFlops (D.P.).

Hopping kernel requires

about 3bytes/flop.

Effective memory

bandwidth is about

6GByte/s.

[Stream benchmark, Triad =

7.7GB/s (meas’d)]

Lattice QCD is bandwidth

intensive application.

22

4. Accelerating D[U]x=b solver using single GPU.

 Volume dependence of performance
 GPU performance (GFLops(SP)) GPU performance reaches

about 100 GFlops (S.P.).

Hopping kernel requires

about 1.4bytes/flop.

Effective memory

bandwidth is about

140GByte/s!!

[Bandwidth test : 115GB/s]

Texture fetching and high

memory bandwidth is very

important to achieve this

performance.

To get good efficiency large volume should be assigned to single GPU.

4. Accelerating D[U]x=b solver using single GPU.

 Single GPU performance in LQCD.
 We found 10x-20x speed up using single GPU.

 16^4 lattice is enough for experimental simulations or

other lattice simulations.

 But this is not our final goal because 16^4 is still

small volume. (32^4 or larger is wanted).

 To enlarge lattice size, multiple GPU or parallel GPU

usage is required.

 Application class:
(1) Multiple GPUs in a single node.

for other kind of lattice simulations

(2) Multiple GPU, Multiple nodes
for O(10)Tflops machine for 32^4 lattice

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

23

5. Many flavor lattice QCD with multiple

GPUs on single node

 Schrodinger Functional (SF) simulation with Nf=10

QCD.
 Class (1) Multiple GPUs in a single node application.

 Nf=10 QCD as a Technicolor model beyond Standard Model of

elementary particles.

 16^4 lattice is enough. Parameter searching type simulation.

 Simulation cost ∝ to number of quarks (10 quarks ⇔ Nf=10)

(Proton/neutron : Nf=2 or 3 QCD)

 The Technicolor model is not ye established experimentally.

Numerical simulation helps the validation from theoretical side.

But simulation cost is too high!! , and most computer time is

given to normal Nf=2 QCD simulations…..

 GPU acceleration can helps this situation.

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

24

5. Many flavor lattice QCD with multiple GPUs on single node

 Schrodinger Functional (SF) simulation with Nf=10

QCD.

 We would like to simulate Nf=10 QCD more economically

with GPU but

 Simulation cost ∝ to number of quarks (10 quarks ⇔ Nf=10)

(Proton/neutron : Nf=2 or 3 QCD). 5x heavy for Nf=10 than

Nf=2.

 10 quarks are independent each others in the HMC

algorithm. Solver for each quark can be done independently.

 Task can be distributed to each GPU (GPU = one quark) in

single node.

 We tested Nf=10 SF QCD using 2GPUs in a

node.

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

25

5. Many flavor lattice QCD with multiple GPUs on single node

 Schrodinger Functional (SF) simulation with Nf=10

QCD.

 Test on

 CPU: Core i7 920 (2.67GHz, 4 core)

 DP: 43 GFlops, SP: 85 GFlops (peak)

 2xGPUs: 2 x (Nvidia GeForce GTX 285)

 240 core @ 1.48 GHz, SP: 710 GFlops (peak)

 OS, compiler

 CentOS 5.2 (Linux), Intel Fortran / C++, CUDA 2.3.

 Cost, BTO one PC box + 2GPU cards

+ Intel compiler.

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

26

N.Yamada, M.Hayakawa, K.-I.I., Y. Osaki, S.Takeda, S.Uno.

arXiv:1003.3288, arXiv:0910.4218(Lat09).

5. Many flavor lattice QCD with multiple GPUs on single node

 Schrodinger Functional (SF) simulation with Nf=10

QCD.

 Quark assignment (Using blocked BiCGStab solver algorithm)

 2GPU case

 GPU#1 = 3 solver calls, GPU#2 = 2 solver calls, in a single

MD step.

 1GPU case

 GPU#1 = 5 solver calls.

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

27

Quark # 1,2

Quark # 3,4

Quark # 5,6

Quark # 7,8

Quark # 9,10

GPU # 2GPU # 1

Quark pair is always

assigned to single external

scalar field.

Quark # 1,2

Quark # 3,4

Quark # 5,6

Quark # 7,8

Quark # 9,10

GPU # 1

Ideally 40 %(3/5 = 0.6) Timing

improvement is expected.

28

 Effect of Multiple GPUs （1GPU⇒2GPU）

GPU solver is calle 5 times in

a CPU solver iteration.

Full timing : 4.06 sec

We observed 34% reduction in timing.

(Ideally it should be 3/5= 0.6 =40% reduction)

GPU solver is called 3 times for

GPU#1 and 2 times for GPU#2.

Full Timing : 2.69 sec

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

5. Many flavor lattice QCD with multiple GPUs on single node

001.0 ,10

10 ,15805.0 ,52.4 ,16

PCAC

2

SF

4





aMg

NF

29

 Timing comparison for single HMC step.

I omitted the details of CPU

side improvements with multi-

core and mixed precision

preconditioning.

We accomplished a factor 2-3

improvement for CPU only. But

this does not win GPU.

GPU is still faster than CPU

code.

Using 2 GPUs we can

accelerate (reduce 34%) in

the timing.

~1/5

~2/3

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

5. Many flavor lattice QCD with multiple GPUs on single node

001.0 ,10

10 ,15805.0 ,52.4 ,16

PCAC

2

SF

4





aMg

NF

6. Towards parallel GPU

computation

 To catch up the most advanced LQCD simulation we

need true parallel GPU computation. O(10)Tflops

machine for 32^4 lattice.

 Like in the parallel computation, the communication

overhead is important.

 Unfortunately, GPUGPU direct communication

device is not available in COTS GPU cards.

 Three steps, GPUCPUCPUGPU,

communication is required in general.

 We investigated this overhead for LQCD application

(D[U]x=b solver).
Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

30

6. Towards parallel GPU computation

 LQCD parallelization

 Data distribution:

 Data communication:

 Exchange edge site data

 Communication hiding behind

internal site computation.

 Edge site computation after receiving

the adjacent site data from next

GPUs.

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

31

6. Towards parallel GPU computation

 Parallel GPU implementation

 Some results [K.-I.I. and Y.Osaki]

 Machine: 4PC’s with

 CPU : Intel Core i7 920@2.67GHz (4cores)

 GPU : GeForce GTX 285 × 2 (2GPUs in 1 node)

 Memory 6GBytes

 LAN Adapter : Intel Gigabit ET Quad Port Server. Poor

man's network. (COTS, cheap)

 CentOS 5.4, CUDA 2.3, OpenMPI

 TCP/IP is too slow. Instead We employed Open-MX

(Myrinet Express over Generic Ethernet Hardware)

library [http://open-mx.gforge.inria.fr/].

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

32

6. Towards parallel GPU computation

 Parallel GPU implementation

 Some results [K.-I.I. and Y.Osaki]

 TCP/IP is too slow. Instead We employed Open-MX (Myrinet

Express over Generic Ethernet Hardware) library [http://open-

mx.gforge.inria.fr/].

 Network performance.

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

33

Max bandwidth ~440 MB/s, lowest latency 16usec (Open-MX)

~140 MB/s, 24usec (TCP/IP)

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

34

416

432

• kappa=0.126 • csw=1.0 • accuracy=10-14 • MixedPrecBiCGStab solver

6. Towards parallel GPU computation

 Strong Scaling test, solving D[U]x=b

Parallel efficiency is always worse than 1.

NO IMPROVEMENT!

Slightly improved NO IMPROVEMENT!

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

35

6. Towards parallel GPU computation

 Strong Scaling test

 For 16^4 lattice, there is no improvement.

 Increasing num. of GPU and node, total time increase….

 For 32^4 lattice, there is almost no improvement.

 Speed up by 30%: 1node1GPU => 1node 2GPU

 No speed up: increasing nodes.

 Node-node communication (MPI) is still too slow.

0 0.5 1 1.5 2 2.5

calc

copy

0 0.2 0.4 0.6 0.8

calc

copy

0 5 10 15

calc

copy

0 2 4 6

calc

copy1CPU

2GPU

2CPU

4GPU

416 432

416 432

MPI(CPUCPU) time

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28
36

6. Towards parallel GPU computation

 Strong Scaling test

 We have tested:

 Simple domain decomposition with communication

hiding.

 Gigabit Ethernet (x4 port) and Open-MX enhanced

network.

 The network performance does not balance with the

GPU speed. Communication hiding fails.

 We need Expensive network hardware (Infiniband,

10GEthernet, True Myrinet…..)?

 Another approach: Solver Preconditioning. Additive

Schwarz Preconditioner.

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28
37

6. Towards parallel GPU computation

 Another approach: Solver Preconditioning.

 Overlapped Additive Schwarz Preconditioner

 Schwarz iteration (common in fluid dynamics research?)

 Use this iteration as a preconditioner for iterative solver.

 Computation in each region Ω is completely independent.

 No communication is required. GPU supports this domain solver.

 Due to the overlapping domain region, total Flop count increases.

 Balance: Reduction of communication overhead and Flop count

increase.

Ω1

Ω2

Γ2 Γ１

, :Compute

),f(:Update

in , :Solve

, ,00

Axbr

xxx

rxA

Axbrx

i

iiii













 Overlapped Additive Schwarz Preconditioner

 Preliminary results [K.-I.I. and Y.Osaki]

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28
38

0

2

4

6

8

10

12

- 0 1 2

Overlap Depth

T
im

in
g

[s
e
c
]

0

100

200

300

400

500

600

700

800

900

T
o
ta

l
O

pe
ra

ti
o
n
 [

G
F
L
O

P
]

Total Time Commun. Time

Total Operation

0

10

20

30

40

50

60

- 0 1 2

Overlap Depth

Ti
m

in
g

[s
ec

]
0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

7.00E+03

8.00E+03

To
ta

l O
pe

ra
tio

n
[G

FL
OP

]

6. Towards parallel GPU computation

416
432

Additive Schwarz preconditioner

without overlapping is effective for

larger lattice. Comm. Overhead is well

reduced.

7. Summary

 Lattice QCD demands huge resource of

computing power.

 Studying possibility of GPU acceleration has

begun in LQCD community.

 Single/Multiple GPU/s in a node is very

effective and attractive as shown here.

But, for more advanced QCD simulation,

 We need more survey on Parallel GPU

computation and algorithm.

Multi-core and GPU computing workshop

@KIAS,Seoul,KOREA/2010/05/27-28

39

감사합니다 Thank you!

