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1. Quark Solver in Lattice QCD 
1-1 Quark solver in HMC and LQCD measurement. 

 

 

 

 

 

 

 

 

 

– Any observables can be estimated via ensemble averaging. 

– For LQCD, The observables are function of Link filed. 

– Quark operators are  replaced to the quark propagators via contraction. 
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UD Most time consuming part of LQCD simulations 

Noise reduction in correlation 
operators (observable): 
See lecture by Peardon. 



• Typical Quark action.  
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Wilson Fermion action. (qaurks) 
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Chiral symmetiric fermions: 
Overlap, Domainwall type 
actions: See lecture by 
Nayaranan. 
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1st order Difference operation. 
single site hopping operation. 

Wilson hopping operator is a fundamental building 
block in LQCD/LFT.   (used in domainwall/overlap….) 
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• How to obtain 1/D ? 
– We need quark propagators                                    . 

 

 

– This is done by solving 

 

– This is large scale linear equation.  The size of matrix is extremely huge 
and impossible store the data on memory. 

– Fortunately we need only few columns of 1/D[U]  on multiplied on a 
few vectors η. 

 

 

 

 

 

– We need a large scale linear equation solver.  => (numerical 
algorithms). 
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2. Solver algorithms for large scale linear 
equations. 

• There are many opportunities for such a large scale linear (or 
nonlinear) equations. 
– Electromagnetic field analysis.                         Maxwell’s eq. 
– Mechanical dynamics analysis for buildings. Newton’s eq. 
– Fluid dynamics analysis for vehicles, 
–                        cars/airplanes/ships/trains….,  Navier-Stokes eq. 
– And LQCD.  Lattice Dirac equations. 

• There are various algorithms for LARGE SCALE linear equations. 
– Stationary iteration algorithms. 

• Jacobi Iteration. 
• Gauss-Seidel (GS) iteration. 
• Successive Over Relaxation (SOR) iteration. 
• …. 

– Adaptive iteration (Krylov Subspace) algorithms. 
• Conjugate Gradient (CG) algorithms 
• Bi-Conjugate Gradient (BiCG) algorithms. 
• Generalized Minimal Residual (GMRES) algorihtms. 
• …… 
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• 2-1  Stationary iterative solvers 
– Based on Neumann/Taylor expansion for 1/(1-z). 

 

 

– Replace z to a matrix (1-A) 

 

 

– This converges when the spectrum of                 is in    

– We need to solver Ax = b. The above series can be reduced to the 
following iteration. 
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• 2-1  Stationary iterative solvers 

– The basic iteration does not converge when                      and even if it 
converges it is slow usually.  

– Some modifications are available to improve the convergence. 

• Splitting method 
– If we can split the matrix into two parts as 

 

 

– We obtain the following  modified equation and converging series. 

 

 

 

 

 

 

 

– For a good convergence, we need to find a decomposition for A=N+M 
with good properties. 
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• 2-1  Stationary iterative solvers 

• Here I will show two common versions for the splitting. 
– Jacobi   iteration (Diagonal scaling) 

 

 
 

 

 

 

– The diagonal part of the matrix is scaled to be 1. 

– For the Wilson fermions this scaling is already incorporated. 
• The diagonal term is the mass term. The mass term is scaled to be 1 and 

the hopping parameter is introduced. 

 
• For improved Wilson actions there are non identity matrix in the site 

diagonal part.  The Jacobi scaling is applicable in this case. 

• The effect of the improvement is limited, otherwise the diagonal part is 
dominant. 
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• 2-1  Stationary iterative solvers 

– Gauss-Seidel   iteration (Triangular spllittng) 
 

 

 

 

 

 

– The matrix can be decomposed to  upper(lower) triangular matrix and strictly 
lower(upper) triangular matrix. 

– The inversion for upper(lower) triangular matrix is easily done using the 
backward(forward) substitution. 

 

 

 

 

 

– For Wilson fermions, 4D lattice sites are indexed and ordered to be 1dim.  
Thus the upper/lowere decomposition depends on the site 
numbering/ordering scheme. The performance also depends on the ordering. 
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General Matrix decomposition /computation see also: R.Barret et al,”Templates for the Solution of Linear Systems: Building 
blocks for Iterative Methods”; Y.Saad “Iterative Methods for Sparse Linear Systems”; 
Details on the ordering and performance for LQCD: see  Y.Oyanagi Comput.Phys.Commun. 42(1986)333; S. Fischer et al. 
Comput.Phys.Commun. 98 (1996) 20.  



• 2-2  Adaptive (Kyrlov subspace) Solvers 
– Stationary Iterative solvers are not sufficient  for High-performance 

computing (LQCD) and usually it is combined with the Krylov subspace 
methods. 

– In the Krylov subspace methods, the iterative solvers are sometimes 
used as the preconditioner of the target system equations. 

• Kyrlov Subspace Solvers 
– For any lattice discretised difference equations,  The induced linear equations 

are usually expressed in the finite but extremely large order linear equations. 

– As the dimension is finite we know that the characteristic polynomial is digree 
N. 

 

 

– From the Cayley-Hamilton theorem we have 

 

 

– This means  Ak with k≧N can be reduced to a degree j≦N-1 polynomial. 
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• 2-2  Adaptive (Kyrlov subspace) Solvers 

• Kyrlov Subspace Solvers 
– Thus for any analytic function f(x) we can express the corresponding 

matrix function as  a N-1 degree polynomial. 

 

 

– For a matrix inverse we also have   

 

 

– The full construction is impossible for extremely large N.  We only 
need an approximation for                       .  

– This corresponds to a optimization problem to minimize the residual 

 

 

 

– By tuning the coeffcients {gj} for                       . 
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The spectrum of A should 
be inside of the 
convergence radii for this 
expression. Other 
expressions are possible 
for matrix functions. 



• 2-2  Adaptive (Kyrlov subspace) Solvers 

• Kyrlov Subspace Solvers 
– The Krylov subspace solver  is a solver that finds these coefficients 

adaptively and iteratively within the  Krylov subspace defined by 
 

 

– The typical algorithm flow is 
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• 2-2  Adaptive (Kyrlov subspace) Solvers 

• Conjugate Gradient (CG) Algorithm 
– CG : one of the most common algorithm. 

– This can solve                               for a Hermitian Positive matrix         .  
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This is a typical convention for 
applied mathematics for matrix 
computations. 
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– For a Lattice quark opeator 
D[U],  CG is applied to  

 

 

 

 

 

 

 

– Squaring is needed since D is 
not Hermitian. 

– (This is called Normal equation.) 
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• 2-2  Adaptive (Kyrlov subspace) Solvers 

• A CG example 
– Solve 1D Hermholz equation                                     with CG.   

– Naïve Discretization (N-sites) 
 

 

 

 

– In Matrix form 

 
 

 

 

 

 

 

– A Fortran program example:                                                                     

[http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/Helmholz1DCG.tar.gz] 
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• 2-2  Adaptive (Kyrlov subspace) Solvers 

– Solve 1D Hermholz equation                                     with CG.  

– A Fortran program example:                                                                     

[http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/Helmholz1DCG.tar.gz] 

– Number of sites N=100,   

 

 

 

 

 

 

 

 

 

 
– Exponential convergence is observed. 

– Theoretically 100 iteration is sufficient to solve the equation.  

– In this case  CG algorithm shows a lucky convergence at 50the iteration. This is because  
of small matrix dimension.  For LQCD this phenomena rarely happen. 
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• Conjugate Gradient (CG) Algorithm 

– The convergence speed is governed by the spectrum of the 
coefficient matrix A. 

– The error bound for the solution has been analytically obtained 
as 

 

 

 

 

 

 

 

– When A has a bad condition number CG sometimes stagnates. 

– In LQCD with the normal equation, D is squared as                  and 
A has a bad condition.  Preconditioning or other solvers 
applicable to non-Hermitian matrix are required. 
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• Bi-Conjugate Gradient Stabilized (BiCGStab) Algorithm 
– As the Wilson Dirac operator is non-Hermitian,  it is desired to directly solve  

linear equations with a non-Hermitian/unsymmetric  coefficient matrix. 

– Bi-Conjugate Gradient Stabilized (BiCGStab) algorithm has been known as a 
best solver for Wilson Dirac quarks.                     [BiCGStab: van der Volst (1992)] 

– The algorithm flow is very similar to that of CG, but we need two the matrix 
vector multiplication in a iteration. 

– The algorithm is: 
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[Frommer et al. Int.J.Mod.Phys. C5 (1994) 1073] 
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• Bi-Conjugate Gradient Stabilized (BiCGStab) Algorithm 

– BiCGStab stagnates when real negative eigenvalues exist in A. 

• A BiCGStab/CGNE Example: 1D Wilson like operator 
 

 

 

 
– Matrix Form 

 

 

 

 
– D is asymmetric. 

– CG is not applicable for Dx=b. 

– A Fortran program example:                                                                       
[http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/Wilson1DCG.tar.gz] 
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• Bi-Conjugate Gradient Stabilized (BiCGStab) Algorithm 

• A BiCGStab/CGNE Example: 1D Wilson like operator  (Nsite = 100, K=0.49) 

– Residual history 
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BiCGStab   with random shadow residual. CG for NE (CGNE) 

BiCGStab shows a fluctuating behavior. This behavior is typical for BiCGStab with 
complex eigenvalues.   Due to this behavior one need to maintain the descrepancy 
between accumulated residual and true residual in the iteration. A reliable update 
method exists.   
CGNE shows a smooth convergence. 
In this case  CGNE is economical than BiCGStab in computational cost. 



• Bi-Conjugate Gradient Stabilized (BiCGStab) Algorithm 

• A BiCGStab/CGNE Example: 1D Wilson like operator  (Nsite = 100, K=0.49) 

– Solution vector 
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BiCGStab  CG for NE (CGNE) 

Both methods converges to a numerically identical solution.          
(How about the consistency to the theoretical solution?) 



3. Preconditioning 
• The Kyrlov subspace methods alone sometimes does not show satisfactory 

convergence when the condition number of the coefficient matrix is large. 

 

 

• The target equation can be modified to identical equation with a 
coeffcieint matrix with small condition number.  This is done  by applying a 
constant matrix to the equation from left hand or inserting a constant 
matrix and its inverse in the right hand side of coefficient matrix.  If the 
modified coefficient matrix has a smaller condition number, the Krylov 
subspace methods show better performance. 
 

 

 

 

• This modification is called “Preconditioning”. 

• The matrix M  is called “Preconditioner” 
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3. Preconditioning 

• Preconditioning is  effective when the following criterion are satisfied. 

(1) The preconditioned coefficient matrix has a smaller condition number. 

(2)  The computational  cost of multiplying  “M”  is sufficiently small. 

 

– The criterion (1) can be satisfied by choosing                           .    However this is 
the original problem.   We have to find an approximation with less 
computational cost (2) for                            .  

 

– Stationary iterative solver is applicable as the preceonditioner.  This 
combination,  Krylov solver + Stationary solver, has been widely used. 

– For LQCD Wilson type quarks,  several effective preconditiners have been 
known.  For Ovelap/Domainwall fermions it is still less known. 
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3. Preconditioning 

• Here I show two examples for the preconditioners. 
(1) Even/Odd site (Red-Black)  preconditioning. 

(2) Gauss-Seidel/SSOR preconditioning. 

(1) Even/Odd site (Red-Black) preconditioning. 
• When the number of sites is a even number we can apply this 

preconditioning to the Wilson type (single hopping) matrix easily. 

• For example we apply this to 1D Wilson like operator.  (Nsite=8 case) 
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3. Preconditioning 

(1) Even/Odd site (Red-Black) preconditioning. 

• For example we apply this to 1D Wilson like operator.  (Nsite=8 case) 
 

 

 

 

 

– In Matrix Form 

 

 

 

 

 

 

 

 

 

 

– Is reordered to  
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3. Preconditioning 

(1) Even/Odd site (Red-Black) preconditioning. 

• For example we apply this to 1D Wilson like operator.  (Nsite=8 case) 
 

 

 

 

 

– In Matrix Form 

 

 

 

 

 

 

 

 

 

 

– We can decouple the unknowns on even(black) sites. 
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3. Preconditioning 

(1) Even/Odd site (Red-Black) preconditioning. 

• For example we apply this to 1D Wilson like operator.  (Nsite=8 case) 
– We can decouple the unknowns on even(black) sites. 

– In 2x2 Block matrix form 

 

 

 
 

– Left preconditioning  

 

 

 

 

 

 

– We have to solve 

–                  for  
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3. Preconditioning 

(1) Even/Odd site (Red-Black) preconditioning. 

• 1D Wilson like operator.  

– In this case  The coefficient matrix is modified from        to  

 

– If kappa is sufficiently small  

 

 

– The preconditioned matrix            is more close to identity matrix.  
Thus we expect                                       and solving                                    
 

 

 

– is more easier than solving the original eq.  

– This technique is also applicable to the 4D Wilson-Dirac type 
operators and have been used widely.(4D site even/odd  
indexing is required.) 
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3. Preconditioning 

(2) Gauss-Seidel/SOR/SSOR preconditioning. 
• For example we apply this to 1D Wilson like operator.  (Nsite=8 case) 

• Without changing we can precondition D as follows.  
 

 

 

 

– In Matrix Form 

 

 

 

 

 

 

 

 

 

– D can be separated to Upper and Lower matrix. 
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3. Preconditioning 

(2) Gauss-Seidel/SOR/SSOR preconditioning. 

• 1D Wilson like operator.  (Nsite=8 case) 

– D can be separated to a sum of a Upper and a Lower matrix. 

 

 

 

 

 

 

 

– The triangular matrixes can be inverted easily by using 
forward/backward substitution. 

– We can consider the following preconditioning 
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3. Preconditioning 

(2) Gauss-Seidel/SOR/SSOR preconditioning. 

• 1D Wilson like operator.  (Nsite=8 case) 

– D can be separated to a sum of a Upper and a Lower matrix. 

 

 

– This corresponds to a single iteration of Gauss-Seidel iteration. 

– We expect that  these 

 

 

 

– have  a better condition number than that of original D. 

– A Krylov solver is applied to the following equations. 
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3. Preconditioning 

(2) Gauss-Seidel/SOR/SSOR preconditioning. 

• 1D Wilson like operator.  (Nsite=8 case) 

• Note : Computational cost of preconditioned matrix is almost the 
same as that of original matrix.  [Eisenstat’s trick] 
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Eisenstat’s trick 
[See also : M. Peardon arXiv:hep-lat/0011080;  
         S. Fischer et al. Comput.Phys.Commun. 98 (1996) 20.] 

For Left prec’d version 

For LR prec’d version 



3. Preconditioning 

(2) Gauss-Seidel/SOR/SSOR preconditioning. 

• 1D Wilson like operator.  (Nsite=8 case) 

• Example of Forward solver: 
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vLwvLw 1

1 2 3 4 5 6 7 8 1 2 8 

)1(v )2(v )3(v )4(v )5(v )6(v )7(v )8(v )1(v )2(v)8(v

)1(w )2(w )3(w )4(w )5(w )6(w )7(w )8(w )1(w )2(w)8(w

source 

Unknowns: 

[See also : M. Peardon arXiv:hep-lat/0011080;  
         S. Fischer et al. Comput.Phys.Commun. 98 (1996) 20.] 



3. Preconditioning 

(2) Gauss-Seidel/SOR/SSOR preconditioning. 

• 1D Wilson like operator.  (Nsite=8 case) 

• Example of Forward solver: 
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[See also : M. Peardon arXiv:hep-lat/0011080;  
         S. Fischer et al. Comput.Phys.Commun. 98 (1996) 20.] 



3. Preconditioning 

(2) Gauss-Seidel/SOR/SSOR preconditioning. 

• 1D Wilson like operator.  (Nsite=8 case) 

• Example of Forward solver: 
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[See also : M. Peardon arXiv:hep-lat/0011080;  
         S. Fischer et al. Comput.Phys.Commun. 98 (1996) 20.] 



3. Preconditioning 

(2) Gauss-Seidel/SOR/SSOR preconditioning. 

• 1D Wilson like operator.  (Nsite=8 case) 

• Example of Forward solver: 
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[See also : M. Peardon arXiv:hep-lat/0011080;  
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3. Preconditioning 

(2) Gauss-Seidel/SOR/SSOR preconditioning. 

• 1D Wilson like operator.  (Nsite=8 case) 

• Example of Forward solver: 
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[See also : M. Peardon arXiv:hep-lat/0011080;  
         S. Fischer et al. Comput.Phys.Commun. 98 (1996) 20.] 



3. Preconditioning 

(2) Gauss-Seidel/SOR/SSOR preconditioning. 

• 1D Wilson like operator.  (Nsite=8 case) 

• Example of Forward solver: 

 

 

 

 

 

 

 

 

 

 

 

• Single hopping structure simplifies the forward/backward substitution code 
programming. (Difficulties always exist in Boundary condition.)                  
Consider Extension to 4D Wilson-Dirac operator. 
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3. Preconditioning 

(2) Gauss-Seidel/SOR/SSOR preconditioning. 

• The upper and lower part decomposition depends on the index ordering.   

• The performance of the preconditioner also depends on the index 
ordering. 

• The data dependency in the forward/backward substitution reflects an 
aspect of properties of preconditioner. 

• It has been known that the high dependency in the resultant 
decomposition means the high performance of the preconditioner. 

• Red/Balck(E/O) preconditioner is a special version of the Gauss-Seidel 
preconditioner. 

• Here I have explained the Gauss-Seidel versions of the preconditioner. 

• For successive over-relaxation (SOR)/sysmmetric successive over-
relaxation (SSOR).  An over-relaxation parameter is inserted in the matrix 
splitting. 
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SSOR preconditioned 

 OR parameter:  1<ω <2 

[See also : M. Peardon arXiv:hep-lat/0011080;  
         S. Fischer et al. Comput.Phys.Commun. 98 (1996) 20.] 



4. Parallelization 
• All example codes are written for a single process execution. 
• For a realistic LQCD simulation,   we need more computational power.      

Parallel computation using multiple process is needed. 
• The most timing consuming part of LQCD is the quark solver. Thus at first 

parallelizing  the quark solver is a good experience before parallelizing 
whole LQCD related programs. 

• Solver example coeds can be parallelized  in two manners. 
– Parallelization by MPI (Message Passing Interface API). 

• This is based on SPMD (Single program multiple data) model 
– Parallelization by OpenMP   

• This is directive based thread parallelization.   This is usefull for 
Single CPU with Multi-cores to fully drive all cores. 
 

• To test the parallel codes with MPI, we need parallel computer 
environment.  If your Linux Desktop contains OpenMPI package, you can 
emulate the parallel environment (even if your PC has single CPU). 
 

• To test OpenMP thread parallelization,  A compiler that can understand the OpenMP 
directives is needed. Unfortunately the level of OpenMP compliance of GNU compiler is 
still low.  The latest GNU complier is at almost satisfactory level,  common Linux 
distributions do not contain this latest version….. 
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4. Parallelization 

• Here I only explain how parallelize quark solver using MPI.  

• I employ again the 1D Wilson like equation as a target 
problem to be parallelized. 
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4. Parallelization 
• 4-1. MPI parallelization 

– Multiple process using  an identical program executable. 

– Run the program code in parallel. 

– Each running process has its own identifier : so called  MPI RANK 
number. 

– Each running process can communicate to/from other processes 
through the MPI API routine calls. The data to be send/received are 
called  a Message. 

– To identify the destination or the source of a message, we use the MPI 
RANK. 
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4. Parallelization 
• 4-1. MPI parallelization 
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Proc.#1 
RANK=0 

Proc.#2 
RANK=1 

Proc.#3 
RANK=2 

Proc.#N 
RANK=N-1 

….. 

Single 
Program 
testMPI 

% mpirun –np N ./testMPI 
Time 

Proc.#1 
RANK=0 

Proc.#2 
RANK=1 

Proc.#3 
RANK=2 

Proc.#N 
RANK=N-1 

….. 

Proc.#1 
RANK=0 

Proc.#2 
RANK=1 

Proc.#3 
RANK=2 

Proc.#N 
RANK=N-1 

….. 

Proc.#1 
RANK=0 

Proc.#2 
RANK=1 

Proc.#3 
RANK=2 

Proc.#N 
RANK=N-1 

….. 

MPI_Send 

MPI_Recv 

MPI_Send 

MPI_Recv 

MPI_Init 
MPI_Comm_size 
MIP_Comm_rank 

MPI_Send 

MPI_Recv 

MPI_Allreduce 
Op= +/max… 

Op. 

MPI_Allreduce 

MPI_Barrier 

MPI_Finalize 

Messages 

Src .            Dst. 



• 4-1. MPI parallelization 

– To parallelize the quark solver we need to know the usage 
of the following limited MPI routines. 
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MPI_Init 
MPI_Comm_size 
MIP_Comm_rank 
MPI_FInalize 

MPI_Send 

MPI_Recv 

MPI_Allreduce 

MPI_Barrier 

MPI environment 
set up 
MPI environment 
request 
These routines 
should be called at 
first and at last in 
the program. 

1-to-1 Communication 
 
These are to be used to 
exchange data missing 
in current process. 
 
Used in 
Wilson-Dirac matrix 
multiplication. 

Global 
communication 
 
Global summation. 
Barrier wait. 
 
Used in the inner-
product operation 
in the solver. 
Used to take a 
timing at W.-D. 
matrix 
multiplication. 



• 4-1. MPI parallelization 

• As an example:  1D Helmholz equation. (NSITE=8 case) 

– Data(vector) are sliced  into several pieces (number of processes=4). 

 

 

 

 

 

 

 

 

 

 

 

– All numerical vector operation are applied to the local arrays. The local 
index  is useful. If you need the global site index, you can recover it 
using the MPI RANK number and local site index. 
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)8(),7(),6(),5(),4(),3(),2(),1( vvvvvvvv

)2(),1( vv )4(),3( vv )6(),5( vv )8(),7( vv

v : vectora

Local array 
v(1:2) 
NLSITE=2 

1,2)1mod(1),1mod(

RANK2RANK

LSITE

LSITE





nNni

iNin Global site index n 
Local site index i 
Index conversion eq. 

v(1),v(2) v(1),v(2) v(1),v(2) v(1),v(2) 

MPI RANK 
RANK=0 

MPI RANK 
RANK=1 

MPI RANK 
RANK=2 

MPI RANK 
RANK=3 



• 4-1. MPI parallelization 

• 1D Helmholz equation. (NSITE=8 case) 

 

 

 

 

 

 

 

– Matrix vector operation (                                  ) needs nearest 
neighboring data.  It has been used a ghost site technique to simplify 
this data communication. 
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)8(),7(),6(),5(),4(),3(),2(),1( vvvvvvvv

)2(),1( vv )4(),3( vv )6(),5( vv )8(),7( vv

Local array 
v(1:2) 
NLSITE=2 

v(1),v(2) v(1),v(2) v(1),v(2) v(1),v(2) 

MPI RANK 
RANK=0 

MPI RANK 
RANK=1 

MPI RANK 
RANK=2 

MPI RANK 
RANK=3 

 vw 2

Local array is extended  to both sides  as  v(0:3). The extended sites 
are called “Ghost sites”.  

v(0),v(1),v(2),v(3) 

MPI RANK 
RANK=0 

v(0),v(1),v(2),v(3) 

MPI RANK 
RANK=1 

v(0),v(1),v(2),v(3) 

MPI RANK 
RANK=2 

v(0),v(1),v(2),v(3) 

MPI RANK 
RANK=3 



• 4-1. MPI parallelization 

• 1D Helmholz equation. (NSITE=8 case) 
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)2(),1( vv )4(),3( vv )6(),5( vv )8(),7( vv

 vw 2

v(0),v(1),v(2),v(3) 
w(0),w(1),w(2),w(3) 

MPI RANK 
RANK=0 

v(0),v(1),v(2),v(3) 
w(0),w(1),w(2),w(3) 

 MPI RANK 
RANK=1 

v(0),v(1),v(2),v(3) 
w(0),w(1),w(2),w(3) 

 MPI RANK 
RANK=2 

v(0),v(1),v(2),v(3) 
w(0),w(1),w(2),w(3) 

 MPI RANK 
RANK=3 

)2(),1( ww )4(),3( ww )6(),5( ww )8(),7( ww

v(0) v(1) v(2) v(3) 

v(0) v(1) v(2) v(3) 

v(0) v(1) v(2) v(3) 

v(0) v(1) v(2) v(3) 

w(0) w(1) w(2) w(3) w(0) w(1) w(2) w(3) 

w(0) w(1) w(2) w(3) w(0) w(1) w(2) w(3) 

v(0) v(1) v(2) v(3) 

v(0) v(1) v(2) v(3) 

v(0) v(1) v(2) v(3) 

v(0) v(1) v(2) v(3) 

Fill ghost sits 
Using MPI 

All differential 
operations are local. 



• 4-1. MPI parallelization 

• 1D Helmholz equation. (NSITE=8 case) 
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enddo

)1(w)(v2)1(v)(     w

,1  do

endif

,.....)DN_RANKMPI_REAL8,(1),1,MPI_Send(v call   

,.....)UP_RANKMPI_REAL8,(2),1,MPI_Send(v call   

,.....)UP_RANKMPI_REAL8,(3),1,MPI_Recv(v call   

,.....)DN_RANKMPI_REAL8,(0),1,MPI_Recv(v call   

else

,.....)UP_RANKMPI_REAL8,(3),1,MPI_Recv(v call   

,.....)DN_RANKMPI_REAL8,(0),1,MPI_Recv(v call   

,.....)DN_RANKMPI_REAL8,(1),1,MPI_Send(v call   

,.....)UP_RANKMPI_REAL8,(2),1,MPI_Send(v call   

 then0)2)(mod(RANK, if

)r(........MPI_Barrie call

)N,N1mod(RANK DN_RANK 

)N1,mod(RANK UP_RANK 

2

LSITE

MPIMPI

MPI











iiii

Ni



 vw 2

Compute Upward RANK number 
Compute Downward RANK number 

IF RANK number is a even number 
1st :send data to odd number RANK 
processes 
2nd :receive data from odd RANK 
processes. 

IF RANK number is a odd number 
1st :receive data from odd RANK 
processes. 
2nd :send data to odd number RANK 
processes 

Send and Receive processes should be 
paired in the 1-to-1 communication.  
Otherwise we encounter  a process 
deadlock. 
This even/odd pairing manner is a well 
used programming pattern. 



• 4-1. MPI parallelization 

• 1D Helmholz equation. (NSITE=8 case) 

 

 

 

 

 

 

 

• CG/BiCGStab/any Krylov  algorithms use  inner product operations. This is 
done as 
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)2(),1( vv )4(),3( vv )6(),5( vv )8(),7( vv

 vw 2

v(0),v(1),v(2),v(3) 
w(0),w(1),w(2),w(3) 

MPI RANK 
RANK=0 

v(0),v(1),v(2),v(3) 
w(0),w(1),w(2),w(3) 

 MPI RANK 
RANK=1 

v(0),v(1),v(2),v(3) 
w(0),w(1),w(2),w(3) 

 MPI RANK 
RANK=2 

v(0),v(1),v(2),v(3) 
w(0),w(1),w(2),w(3) 

 MPI RANK 
RANK=3 

)2(),1( ww )4(),3( ww )6(),5( ww )8(),7( ww

prod !return 

...)MPI_SUM,..MPI_REAL8,1,,produce(rtmp,MPI_Allred call

enddo

w(i)*v(i)rtmprtmp     

,1  do

0.0rtmp

0.0prod

LSITE









Ni

wv |prod

All MPI process obtain the same 
numerical number in the “prod” 



• 4-1. MPI parallelization 

• 1D Helmholz equation. (NSITE=100 case) 

• Fortran program:                                                           
[http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/MPI_Helmholz1DCG.tar.gz] 
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We have to check the consistency to the non-parallel version in parallel programming. 
It is more better to check the consistency by varying  the number of processes. 



Thank you! 
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Problems 
(1) Try to extend the 1D Helmholz solver to 2D or 3D versions. 

(2) Try to extend the 1D Wilson like equation solver to a 4D Free 
Wilson-Dirac quark solver.  In this case we need complex 
number operations and vectors. You have to extend or slightly 
modify the BiCGStab algorithm for complex non-Hermitian 
matrixes.  

 

(3) Try to write a SSOR preconditioned solver for 1D Wilson like 
equation solver. 

 

(4) Parallelize the 1D Wilson like equation solver if you can use 
MPI environment. 

(5) Parallelize the 2D/3D Helmholz solver. 

(6) [Advanced] How about the SSOR preconditioner in parallel 
case? 
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History 

• 2013/01/31: Page 16, CG algorithm 
convergence theorem was corrected. 
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