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1. Quark Solver in Lattice QCD

1-1 Quark solver in HMC and LQCD measurement.
(OU, DT™]) =~ | | Hd¢ (n)d¢(n)H dr7,,(n)du,,(n)

O[U,DUT ]xexp[—H[H,u,¢*,¢]]

HMC [O

1 | -
z_Z:O[U(J)’D[U(J)]—l]
N <

UO U Yo ... yny
Tr[/77]

Noise reduction in correlation
operators (observable):

See lecture by Peardon. H [H1U ’¢T , ¢] —

+S5[U]+|(DU1) [

— Any observables can be estimated via ensemble averaging.
— For LQCD, The observables are function of Link filed.
— Quark operators are replaced to the quark propagators via contraction.

(D[U ])_1 Most time consuming part of LQCD simulations
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e Typical Quark action.

Chiral symmetiric fermions:
Overlap, Domainwall type

SolU.T,q]= Z qu D [U1(n,m)q; ( ) actions: See lecture by
f=u=d nm Nayaranan.
2
¥ _ 1
= SpelU. 9. 9] = ; ~ (Df Y ]) (n, mW(m)‘ Wilson Fermion action. (gaurks)

D, [U](n,m) =35, —chz[ (=7, 0, (M5 o+, 0, (=) 5, 0]

1

_[1 xiH hop](n m) o :m

4

1 1 T M) g ) kX[, U, (BN + )+ (1t p,)U, (- 2) p(n - 1)

u=1
n—u N+ u 15t order Difference operation.
n <> single site hopping operation.
Wilson hopping operator is a fundamental building
¢ ) ¢ ) | block in LQCD/LFT. (used in domainwall/overlap....)
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e How to obtain 1/D ?

2013/1/31

We need quark propagators S = (D[U ])Tl

This is done by solving D[U ]S =1 D[U] S |=

This is large scale linear equation. The size of matrix is extremely huge
and impossible store the data on memory.

Fortunately we need only few columns of 1/D[U] on multiplied on a
few vectors n.

Sp, =D, j=123,---<<N

Sj=1---|\| 7i<...N

We need a large scale linear equation solver. => (numerical
algorithms).

dim
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2. Solver algorithms for large scale linear
equations.

 There are many opportunities for such a large scale linear (or
nonlinear) equations.
— Electromagnetic field analysis. & Maxwell’s eq.
— Mechanical dynamics analysis for buildings. <»>Newton’s eq.
— Fluid dynamics analysis for vehicles,
— cars/airplanes/ships/trains...., <>Navier-Stokes eq.
— And LQCD. < Lattice Dirac equations.

 There are various algorithms for LARGE SCALE linear equations.
— Stationary iteration algorithms.

* Jacobi Iteration.
Gauss-Seidel (GS) iteration.
* Successive Over Relaxation (SOR) iteration.

— Adaptive iteration (Krylov Subspace) algorithms.
Conjugate Gradient (CG) algorithms
Bi-Conjugate Gradient (BiCG) algorithms.
Generalized Minimal Residual (GMRES) algorihtms.
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e 2-1 Stationary iterative solvers

— Based on Neumann/Taylor expansion for 1/(1-z).

1
——=1+z+2°+2°+---  for|z|<1
1-7z
— Replace z to a matrix (1-A)

At=01-01-A)" =1+(1-A)+[1-A) +[1-A) +---

— This converges when the spectrum of (31— A) isin |1-A)<1

— We need to solver Ax = b. The above series can be reduced to the
following iteration.

(step0) x=Db

(stepl) r =b— Ax

(step2) x =X+r

(step3) If | r |is sufficiently small then exit else goto step1l.

A'b=b+(1-Ab+@1A-A b+@1-Alb+---



2-1 Stationary iterative solvers

— The basic iteration does not converge when [(1-A)>1 and even if it
converges it is slow usually.

— Some modifications are available to improve the convergence.
* Splitting method
— If we can split the matrix into two parts as
A=N+M, N : easy toinvertand |N"*M| <1
— We obtain the following modified equation and converging series.
Ax=b=(N+M)x=b=(1+N*M)}x=N"b=b
A=0+N*M)J'b=b+(-N*MpP+(-N*Mfb+(N*Mfb+
(step0) b = N b, x =b
(stepl) r=b —(1+ N M)x

(step2) x = x+r=h — N'Mx
(step3) if | r|is sufficiently small then exit else goto step1.

— For a good convergence, we need to find a decomposition for A=N+M
with good properties. |\ - eqsy toinvert and ‘N‘lM‘ <1




e 2-1 Stationary iterative solvers
* Here | will show two common versions for the splitting.

— Jacobi iteration (Diagonal scaling)

a, a, z; - a, 0 o - 0 d, a3
a a a 0 a 0 a O a
A= 21 22 .23 _ 22 . " 21 .23 “N+M
g, Ay . 0 0 . ay, Ay
1 aja, aja; -
N—lA: az_;au 1 az_;az3

8358, As38s,
— The diagonal part of the matrix is scaled to be 1. P

— For the Wilson fermions this scaling is already incorporated.
* The diagonal term is the mass term. The mass term is scaled to be 1 and

the hopping parameter is introduced.
1

DI, M) = [l Hug km) v, =2y

* For improved Wilson actions there are non identity matrix in the site
diagonal part. The Jacobi scaling is applicable in this case.
* The effect of the improvement is limited, otherwise the diagonal part is

dominant.



e 2-1 Stationary iterative solvers

— Gauss-Seidel iteration (Triangular spllittng) NA — difficult towrite down

&, &, a5 - a, a, a, - O 0 0 -- full components....
A= 8y 8y iazs R 0 a, ?22 + a 0 'O R N + M
g, 85, . o 0 - Ay, 8y, .

— The matrix can be decomposed to upper(lower) triangular matrix and strictly
lower(upper) triangular matrix.

— The inversion for upper(lower) triangular matrix is easily done using the
backward(forward) substitution.

N 0O f 1<
SUx =b, U, =1 0 rl=haon_y
=) =0 for (i>]))
i+1
U;; j=N

Backward substitution

— For Wilson fermions, 4D lattice sites are indexed and ordered to be 1dim.
Thus the upper/lowere decomposition depends on the site
numbering/ordering scheme. The performance also depends on the ordering.

General Matrix decomposition /computation see also: R.Barret et al,”Templates for the Solution of Linear Systems: Building
blocks for Iterative Methods”; Y.Saad “Iterative Methods for Sparse Linear Systems”;
Details on the ordering and performance for LQCD: see Y.Oyanagi Comput.Phys.Commun. 42(1986)333; S. Fischer et al.

Comput.Phys.Commun. 98 (1996) 20. i o
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e 2-2 Adaptive (Kyrlov subspace) Solvers

— Stationary lterative solvers are not sufficient for High-performance

computing (LQCD) and usually it is combined with the Krylov subspace
methods.

— In the Krylov subspace methods, the iterative solvers are sometimes

used as the preconditioner of the target system equations.

* Kyrlov Subspace Solvers

For any lattice discretised difference equations, The induced linear equations
are usually expressed in the finite but extremely large order linear equations.

As the dimension is finite we know that the characteristic polynomial is digree
N.

det[A—A]= p(A) = A" +c A" +Cy LA S+ CA+C,
A: N xN matrix

From the Cayley-Hamilton theorem we have

p(A) = A" +c AV +c LAYV +---+CcA+c, =0

This means Ak with k=N can be reduced to a degree j=N-1 polynomial.



e 2-2 Adaptive (Kyrlov subspace) Solvers

* Kyrlov Subspace Solvers
Thus for any analytic function f(x) we can express the corresponding

2013/1/31

matrix function as a N-1 degree polynomial.
F(A) =0y A" T +0y,A "+ + g A+,
For a matrix inverse we also have

A = gN—lAN_l + gN—zAN_.2 LAk 91A+ Yo

The spectrum of A should
be inside of the
convergence radii for this
expression. Other
expressions are possible
for matrix functions.

det[A]/=0

The full construction is impossible for extremely large N. We only

need an approximation forx = A™h

This corresponds to a optimization problem to minimize the residual

=b—Ax=b-Ald,, A" *b+d,, ,A" 20+---+d,Ab+d,b]

By tuning the coeffcients {g } for M << NJ.
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e 2-2 Adaptive (Kyrlov subspace) Solvers
e Kyrlov Subspace Solvers

— The Krylov subspace solver is a solver that finds

these coefficients

adaptively and iteratively within the Krylov subspace defined by

Span{b, Ab, A%b,---, A" b, AV} =

— The typical algorithm flow is

(Step0) Given initial solution  x = x©

(Stepl) Computeinitail residual vector r =Db— Ax
(Step2) Iterative Loop Start :

KM (A;b)

Depends on
optimization
strategy

to minimize thefollowing residual.

(StepX) Computea coefficient « and a vector v from previousiteration
data/history using linear algebra (inner - product,vecto add.....)

(StepX+1) Update(minimize locally) theresidual r =r+«a Av
(StepX+2) Updatethesolution X=X—-aV

Independent of
optimization strategy

(StepZ) Gotostep 2 untill|r| is sufficiently small.

H L . .
2013/1/31 Asian School on Lattice Field Theory

foragiven r =b— Ax, theupdates
r'er+a Av

X'=X—av

does not change r'=b—Ax"
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e 2-2 Adaptive (Kyrlov subspace) Solvers

 Conjugate Gradient (CG) Algorithm

— CG : one of the most common algorithm.

— This can solve AX — b

for a Hermitian Positive matrix A .

. R (V) —
— For a Lattice quark opeator X=xPr=b-Axp=r

D[U], CG is applied to

Dp=n=D'Dgp=D"n q=Ap

U

Lo =<I’ | I’>
do

“:%plow

AX =D

X=X+ap

®Greek characters are scalar variables.
®Roman characters are vectors.
®Capital Romans are matrixes.

This is a typical convention for
applied mathematics for matrix
computations.

r=r-aq

A=D'D,x=¢,b=D"p p=(rlr)

— Squaring is needed since D is ﬁ:% Py = Oy
0

not Hermitian.

— (This is called Normal equation.)

2013/1/31

p=r+/p

end do

if |r|=./p, issufficiently small exit do loop

Asian School on Lattice Field Theory
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2-2 Adaptive (Kyrlov subspace) Solvers
* ACGexample

— Solve 1D Hermholz equation (—A+ K2)¢ = 0 with CG.
— Naive Discretization (N-sites)

—di+D)+ QR+ x)P(i)—pi—1) = p(i) For i=1---,N
(N +1) = (1), 4(0) =¢(N)  (periodicb.c.)

_ Lattice spacing a is absorbed in
— In Matrix form the normalization of rho, kappa,
and number of sites.

f -1 0 - 0 -1Y 40 (1)
1 f -1 - 0l ¢ 2(2)
O _1 ) . °. . .
T | S

f =2+ 0 oo =1 e(N=D) | | p(N D)
1 0 - 0 -1 f ) N) o(N)

— A Fortran program example:
[http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/Helmholz1DCG.tar.gz]

Asian School on Lattice Field Theory
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2-2 Adaptive (Kyrlov subspace) Solvers

Solve 1D Hermholz equation (—A+ K2)¢ = p with CG.

A Fortran program example:
[http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/Helmholz1DCG.tar.gz]

Number of sites N=100, x? =0.1

Residual History Solution vector
1D Helmholz equation CG solver, residual history 1D Helmholz equation CG solver, solution vector
107 P ' ' ' ' 10° '
100 F 7*'*+\+.H“ 1
102 | Ny 1 o | \\
10'3 - ey *‘*"\_h* . \\
107 | T, ; 102 |
102 T !
- 10° F "H.\**‘ E . -3
<>F< 107 k M § X 10
= 10'8 3 ‘ 1 < 10‘4 L
101'2 . | ]
1079 | | 1 107°
o7 | I R
101 | 1 10° |
10-13 i ‘ 1
10—14 ........................................................... 10—7 ...................................................................................................
0 10 20 30 40 50 60 10 20 30 40 50 60 70 80 90 100
CG iteration count X
— Exponential convergence is observed.
— Theoretically 100 iteration is sufficient to solve the equation.
— Inthis case CG algorithm shows a lucky convergence at 50the iteration. This is because
of small matrix dimension. For LQCD this phenomena rarely happen.
. ttice i
2013/1/31 Asian School on Lattice Field Theory 15
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* Conjugate Gradient (CG) Algorithm

— The convergence speed is governed by the spectrum of the
coefficient matrix A.

— The error bound for the solution has been analytically obtained
as

m
x|, <2 K e o
HVHA = \/<V | Al V> X* True solution
K = K(A) = AL X9 nitial guess
_ ( ) — HA”H H X(m) CG guess at mth iter.

Condition number of matrix A

— When A has a bad condition number CG sometimes stagnates.

— In LQCD with the normal equation, D is squared as A=D'D and
A has a bad condition. Preconditioning or other solvers
applicable to non-Hermitian matrix are required(D'D) z‘K(D)‘Z

Asian School on Lattice Field Theory
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e Bi-Conjugate Gradient Stabilized (BiCGStab) Algorithm

— As the Wilson Dirac operator is non-Hermitian, it is desired to directly solve
linear equations with a non-Hermitian/unsymmetric coefficient matrix.

— Bi-Conjugate Gradient Stabilized (BiCGStab) algorithm has been known as a
best solver for Wilson Dirac quarks. [BiCGStab: van der Volst (1992)]

— The algorithm flow is very similar to that of CG, but we need two the matrix

vector multiplication in a iteration. For LQCD Wilson quarks, introduced by

. . [Frommer et al. Int.J.Mod.Phys. C5 (1994) 1073]
— The algorithm is:

x=xr=b-Ax;p=r; t=Ar
Shadow vetctor T can be arbitrary. e (t] y
A simple choiceisset I =r. <t |t>
py={F|1) X=X+ ar
do r=r—ot
q=Ap if |r| is sufficiently small exit do loop

a=Po_ ,01:<F|r>
X = x+/<ap| K B =(%)X%O);po =P

r=r-aq p=r+p(p-aq)
if |r| is sufficiently small exit do loop end do

31 ST OCTTOON on Lattice Fiel eory
2011
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Bi-Conjugate Gradient Stabilized (BiCGStab) Algorithm
— BiCGStab stagnates when real negative eigenvalues exist in A.

* A BiCGStab/CGNE Example: 1D Wilson like operator

(D@)(i) = 4(i) - |1 - 03)p(i +1) + 1+ 3)é(i —1) | = p(i)
¢(N +1) =¢(1),#(0) = p(N) (periodic b.c.)

¢(1) :2-componentspinor, o,: 3rd-Pauli matrix.

— MatrixForom (E -F 0 - 0 -=-BY) ¢@® p)

B E -F - 0 | ¢(2) 0(2)

0 _B . . 3 : :

T .

0 .. E —F|é(N=D| | p(N-2)

“F 0 - 0 -B E | ¢(N) o(N)
— D is asymmetric. 1 0 0 0 2k 0
— CG is not applicable for Dx=b. E:(O 1)’ - :(O ch} B:( 0 Oj

— A Fortran program example:
[http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/Wilson1DCG.tar.gz]

Asian School on Lattice Field Theory
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e Bi-Conjugate Gradient Stabilized (BiCGStab) Algorithm
* A BiCGStab/CGNE Example: 1D Wilson like operator (Nsite = 100, K=0.49)
— Residual history

BiCGStab with random shadow residual. CG for NE (CGNE)
1D Wilson like equation (k=0.49) BiCGStab solver 1D Wilson like equation (k=0.49) CGNE solver
residual history residual history
10! mr ' ' 3 0
107 b Mg Jr 10, b
10 % | oqo2f T
02 L RO T ;
10, 1 1 104§ | ]
10 ' 1 © 75 |
Du 10-7 ﬁ : (] 10'7 : | :
2 104 3 1108 |
199 | ] < 09 } | ;
123910 1 i ] =10 9 | \ ‘
107 \ i b : $100lk | :
1053 ol IR 3 e ]
13 Lt T | 3 13 a ]
Rl Gt O UNOOOR SN2 AR
0 100 200 300 400 500 0 50 100 150
BiCGStab D multiplication count D or DY multiplication count
®BiCGStab shows a fluctuating behavior. This behavior is typical for BiCGStab with
complex eigenvalues. Due to this behavior one need to maintain the descrepancy
between accumulated residual and true residual in the iteration. A reliable update
method exists.
® CGNE shows a smooth convergence.
®In this case CGNE is economical than BiCGStab in computational cost.
2013/1/31 Asian School on Lattice Field Theory
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e Bi-Conjugate Gradient Stabilized (BiCGStab) Algorithm

* A BiCGStab/CGNE Example: 1D Wilson like operator (Nsite = 100, K=0.49)
— Solution vector

BiCGStab CG for NE (CGNE)

1D Wilson like equation (k=0.49) BiCGStab solver

1D Wilson like equation (k=0.49) CGNE solver
solution vector

solution vector

100 F =~ " spinup - | 100 } spinup 1
Spln dOW.n_,r”"l" ””” Sp|n dow-n_/,,.:i ,,,,,,
S 2
< =
107! 107"

10 20 30 40 50 60 70 80 90 100
X

10 20 30 40 50 60 70 80 90 100
X

Both methods converges to a numerically identical solution.
(How about the consistency to the theoretical solution?)

Asian School on Lattice Field Theory
2013/1/31 2011@TIFR 20



3. Preconditioning

* The Kyrlov subspace methods alone sometimes does not show satisfactory
convergence when the condition number of the coefficient matrix is large.

AX =D K(A) = HA\”HA*H >>1

* The target equation can be modified to identical equation with a
coeffcieint matrix with small condition number. This is done by applying a
constant matrix to the equation from left hand or inserting a constant
matrix and its inverse in the right hand side of coefficient matrix. If the
modified coefficient matrix has a smaller condition number, the Krylov

subspace methods show better performance.

(MA)X = Mb K(MA) < K(A) Left preconditioning
AX=b=
(Al\/l )Z =b,x =Mz K(AM ) < K(A) Right preconditioning
* This modification is called “Preconditioning”. Left-Right preconditioning

e The matrix M is called “Preconditioner”

is also possible.

Asian School on Lattice Field Theory
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3. Preconditioning

(MA)X =Mb K(MA) < K(A) Left preconditioning

AX=bh=

(AM )Z =b,x =Mz K(AM ) < K(A) Right preconditioning

Left-Right preconditioning
is also possible.

* Preconditioning is effective when the following criterion are satisfied.
(1) The preconditioned coefficient matrix has a smaller condition number.
(2) The computational cost of multiplying “M” is sufficiently small.

— The criterion (1) can be satisfied by choosing M ~ A™* . However this is
the original problem. We have to find an approximation with less
computational cost (2) for M ~ A—l .

— Stationary iterative solver is applicable as the preceonditioner. This
combination, Krylov solver + Stationary solver, has been widely used.

— For LQCD Wilson type quarks, several effective preconditiners have been
known. For Ovelap/Domainwall fermions it is still less known.

Asian School on Lattice Field Theory
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3. Preconditioning

 Here | show two examples for the preconditioners.
(1) Even/Odd site (Red-Black) preconditioning.
(2) Gauss-Seidel/SSOR preconditioning.

(1) Even/Odd site (Red-Black) preconditioning.

*  When the number of sites is a even number we can apply this
preconditioning to the Wilson type (single hopping) matrix easily.

* For example we apply this to 1D Wilson like operator. (Nsite=8 case)

#@8) o) ¢(2) ¢(3) #(4) #(05) ¢(6) ¢(7) ¢@8) ¢1) #(2)
©

O O O O O O O o O o
Matrix index 8 1 2 3 4 5 6 7 8 1 2

T 48) $() 42 43 HA) 45) #6) 47) 6 #1) #(2)
o o °® ¢ ° ° °

Matrix index 8 1 5 2 6 3 7 4 8 1 5



3. Preconditioning

(1) Even/Odd site (Red-Black) preconditioning.

Matrix index

Normal
ordering

2013/1/31

For example we apply this to 1D Wilson like operator. (Nsite=8 case)

— Isreordered to

2011@TIFR
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|+

0 2«

#@8) ¢1) #(2) ¢(3) ¢(4) ¢(5) ¢(6) ¢(7) #(@B) ¢(1) #(2)
(o o o o o o o o o
1 2 3 4 5 6 7 8
— In Matrix Form
E -F -BY o)) (pD)
-B E -F #(2) | | p(2)
-B E -F $(3) | | pB)
-B E -F #(4) | | p(4)
-B E -F ) | | p()
-B E -F ¢(6) | | p(6)
-B E -F (@) |p()
-F -B E \d(8)) (p(B)
1 0 0O O

j,B




* For example we apply this to 1D Wilson like operator. (Nsite=8 case)

3. Preconditioning

(1) Even/Odd site (Red-Black) preconditioning.

#@) o) #(2) #Q3) ¢(4) ¢(O) ¢(6) ¢(7) ¢(B) ¢(1) ¢(2)
© @ o ® o ® o ® © ® o

Matrix index 8§ 5 2 6 3 7
— In Matrix Form
E —F - B
E -B -—-F
Red-Black E -B -F
Ordering E B -F
(even/odd B _F E
ordering) B _F c
-B -—-F E
- F - B E
— We can decouple the unknowns on even(black) sites.
2013/1/31 Asian School on Lattice Field Theory
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¢(1)
¢(3)
¢(5)
#(7)
#(2)
#(4)
¢(6)
¢(8)

E

10
01

8

Q)
PQ)
P ()
p(7)
p(2)
p(4)
p(6)
p(8)

)




3. Preconditioning

(1) Even/Odd site (Red-Black) preconditioning.
* For example we apply this to 1D Wilson like operator. (Nsite=8 case)

— We can decouple the unknowns on even(black) sites.
— In 2x2 Block matrix form

Dy D
( RR RB j(¢Rj _ (,OR } DRR = DBB — diag (1’1,1,1) 1
Dgr  Dgs A% yo

— Left preconditioning

o o, TLEHe )

N (1_ Dpgg Der OJ(%J _ (pR - DRBij
Dgr 1\ 95 Pz

— We have to solve (1_ DRB DBR )¢R = Pr — DRB,OB

— for ¢R
Ps = Pg — D@y

Asian School on Lattice Field Theory
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3. Preconditioning

(1) Even/Odd site (Red-Black) preconditioning.
1D Wilson like operator.
— In this case The coefficient matrix is modified from D to

IﬁRR (1_ DRB DBR )

— If kappa is sufficiently small

D =1+0O(x)
[SRR =1—Dgg Dgr =1+0(«x")

— The preconditioned matrix D, is more close to identity matrix.
Thus we expect K([SRR) <K(D) andsolving

Dpr@r = Pr Pr = Pr — Dgrg pg

— is more easier than solving the original eq. D¢ =P

— This technique is also applicable to the 4D Wilson-Dirac type
operators and have been used widely.(4D site even/odd
indexing is required.)

Asian School on Lattice Field Theory
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3. Preconditioning

(2) Gauss-Seidel/SOR/SSOR preconditioning.

For example we apply this to 1D Wilson like operator. (Nsite=8 case)

Without changing we can precondition D as follows.

98 ¢(1) #(2) #Q3) #(4) ¢() #(6) #(7) #@B) ¢Q) ¢(2)
(o o o o o o o o o o 0
Matrix index 8 1 2 3 4 5 6 7 8 1 2
— In Matrix Form
E -F -B\ 9@ ) (p,QD
Normal -B B -F #(2) | | p(2)
ordering -B E -F ¢(3) | | p3)
-B E -F (4 |_| p(4)
-B E -F ¢(5) | | p(5)
-B E -F 46)| | p(6)
-B E —F|¢()| | p(7)
-F -B  E \¢@B)) (p(8)

0 O

— D can be separated to Upper and Lower matrix.Ez[; ‘3 (o,

(2o

2k 0
0 O

)



3. Preconditioning

(2) Gauss-Seidel/SOR/SSOR preconditioning.

10 0 O 2k 0
1D Wilson like operator. (Nsite=8 case) E_(o 1]’F_(0 ZKJ’B_(O 0)
— D can be separated to a sum of a Upper and a Lower matrix.
E -F -B E E —-F -B
-B E -F -B E E -F
-B E -F -B E E -F
-B E -F ~ B E N E -F
B E -F - -B E E -F
-B E -F -B E E -F
-B E -F -B E E -F
—F -B E —F -B E E
—diag(E, E,E,E,E,E,E,E)
D=L+U-1

— The triangular matrixes can be inverted easily by using
forward/backward substitution.

— We can consider the following preconditioning
LD =1+ |_‘1(U _1), U'D=1+U ‘1(|_ _1) Left prec’d by inv.of L or U
DL? :1+(U —l)L_l, DU =1+ (L —1)J - Right prec’d by inv.of L or U
L'DU* =U+L*1-U?) UDL*=L*+U*1-L") LRprecdbyinvofL & U



3. Preconditioning

(2) Gauss-Seidel/SOR/SSOR preconditioning.
1D Wilson like operator. (Nsite=8 case)
— D can be separated to a sum of a Upper and a Lower matrix.

D=L+U-1

— This corresponds to a single iteration of Gauss-Seidel iteration.

— We expect that these
L'D=1+L"'(U-1), U'D=1+U"(L-1)

DL'=1+(U-1)L*, DU =1+(L-1U™

‘DU =U+ LM 1-U?) utDL =L +U M- LY
— have a better condition number than that of original D.
— AKrylov solver is applied to the following equations.

i+ |_‘1(U 1)])( — Lo For Left prec’d by inv. of L.
1+ U 1 ]Z =bh, x=L"z2 For Right prec’d by inv. of L.
U+ L‘l(l—U k=L%, x=L'z  ForlR precd by inv.of L & U.



3. Preconditioning

(2) Gauss-Seidel/SOR/SSOR preconditioning.
1D Wilson like operator. (Nsite=8 case)

* Note : Computational cost of preconditioned matrix is almost the
same as that of original matrix. [Eisenstat’s trick]

i—1

v=Lwe v, =w + > Lw, for i=12,---,N-LN. < N(N +1)flop[+x]

] le

i—1
v=Lvev =w-> Ly, fori=12--,N-1N.<|N(N +1)flop[+x]
j=1

")

Dv=(L+U -1)v: Cost[Dv]~ Cost[Lv]+ Cost[Uv]
L'Dv=(1+L"(U -1)v: Cost[L'Dv]~ Cost[L v]+ Cost[Uv] » Cost[Dv]

L'DU v=U v+ L‘l(l—U ‘1)v For Left prec’d version
=s=U"
L'DU 'v=s+L"(v—s) ] Cost[L"DU *v] = Cost[L"v]+ Cost[U v] = Cost[Dv]

N reonstat’s trick For LR prec’d version

[See also : M. Peardon arXiv:hep-lat/0011080;

Asian Sc S. Fischer et al. Comput.Phys.Commun. 98 (1996) 20.]
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3. Preconditioning

(2) Gauss-Seidel/SOR/SSOR preconditioning.
1D Wilson like operator. (Nsite=8 case)
 Example of Forward solver: Lw=V-—->w= L

source V(8) V(1) Vv(2) v(3) v(4) v(5) Vv(6) v(7) v(8) v(l) Vv(2)

© o o— o O o o o -0 o o
1 2 3 4 5 6 7 8 1 2

oo W(B) W(I) W(2) W(3) W(A) W(S) W(E) W(7) W(E) W(l) w(2)

[See also : M. Peardon arXiv:hep-lat/0011080;

Asian Sc S. Fischer et al. Comput.Phys.Commun. 98 (1996) 20.]
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3. Preconditioning

(2) Gauss-Seidel/SOR/SSOR preconditioning.
1D Wilson like operator. (Nsite=8 case)
 Example of Forward solver: Lw=V-—->w= L

source V(8) V(1) Vv(2) v(3) v(4) v(5) Vv(6) v(7) v(8) v(I) Vv(2)

© o— o O o o o -0 o o
1 2 3 4 5 6 7 8 1 2

Unknowns: W(88) W(l) W(2) W(3) W(4) W(5) W(6) W(7) W(8) W(l) W(Z)

v(l) v(})

[See also : M. Peardon arXiv:hep-lat/0011080;

Asian Sc S. Fischer et al. Comput.Phys.Commun. 98 (1996) 20.]
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3. Preconditioning

(2) Gauss-Seidel/SOR/SSOR preconditioning.
1D Wilson like operator. (Nsite=8 case)

 Example of Forward solver: Lw=V-—->w= L

source V(8) V(1) Vv(2) v(3) v(4) v(5) Vv(6) v(7) v(8) v(I) Vv(2)

NN DA NN
Unknowns: W(8) W(l) W(2) W(3) W(4) W(5) W(6) W(7) W(8) W(l) W(2)

vi) v(D) vid) v@)
+ +
Bw(1) Bw(1)

[See also : M. Peardon arXiv:hep-lat/0011080;

Asian Sc S. Fischer et al. Comput.Phys.Commun. 98 (1996) 20.]
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3. Preconditioning

(2) Gauss-Seidel/SOR/SSOR preconditioning.
1D Wilson like operator. (Nsite=8 case)

 Example of Forward solver: Lw=V-—->w= L

source V(8) V(1) Vv(2) v(3) v(4) v(5) Vv(6) v(7) v(8) v(I) Vv(2)

o h \&0 o o o o——o o o
8 3 4 5 6 7 8 1

Unknowns: W(8) W(l) W(Z) W(3) W(4) W(5) W(6) W(7) W(8) W(l) W(2)

v v() v(3) vid) v@)
+ + +
Bw(1) Bw(2) Bw(1)

[See also : M. Peardon arXiv:hep-lat/0011080;
S. Fischer et al. Comput.Phys.Commun. 98 (1996) 20.]
2011@TIFR
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3. Preconditioning
(2) Gauss-Seidel/SOR/SSOR preconditioning.

1D Wilson like operator. (Nsite=8 case)

 Example of Forward solver: Lw=V-—->w= L

source V(8) V(1) Vv(2) v(3) v(4) v(5) Vv(6) v(7) v(8) v(I) Vv(2)

tjr e oo o

wnoonrs: W@ WD) W(2) W) (4) W) w6 W(7) w(®) W) w(2)

v(l) v v(3) v(4) v(B) v(6) v(7) v(l) v(l)

+ + + + + + +

Bw(1) Bw(2) Bw(3) Bw(4) Bw(5) Bw(6) Bw(1)

[See also : M. Peardon arXiv:hep-lat/0011080;

Asian Sc S. Fischer et al. Comput.Phys.Commun. 98 (1996) 20.]
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3. Preconditioning
(2) Gauss-Seidel/SOR/SSOR preconditioning.

1D Wilson like operator. (Nsite=8 case)

 Example of Forward solver: Lw=V-—->w= L

source V(8) V(1) Vv(2) v(3) v(4) v(5) Vv(6) v(7) v(8) v(I) Vv(2)

O O
v%stg Wg W(%’ mﬁ) -J(‘%) -%rﬁwﬁgmh) w(2)

v(8) v() v(1) v v(4) V(5 v(6) v(7) v(8) v() v

+ + + + + + + 4+

_|_
Bw(7) Bw(1) Bw(2) Bw(3) Bw(4) Bw(5) Bw(6) Bw(7) Bw(1)
+ +
Fw(l) Fw(l)

Single hopping structure simplifies the forward/backward substitution code
programming. (Difficulties always exist in Boundary condition.)

Consider Extension to 4D Wilson-Dirac operator.
Asian School on Lattice Field Theory
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3 f [See also : M. Peardon arXiv:hep-lat/0011080;
(2) Gauss-Seidel/SOR/SSOR precor S. Fischer et al. Comput.Phys.Commun. 98 (1996) 20.]

 The upper and lower part decomposition depends on the index ordering.

 The performance of the preconditioner also depends on the index
ordering.

* The data dependency in the forward/backward substitution reflects an
aspect of properties of preconditioner.

* |t has been known that the high dependency in the resultant
decomposition means the high performance of the preconditioner.

* Red/Balck(E/O) preconditioner is a special version of the Gauss-Seidel
preconditioner.

 Here | have explained the Gauss-Seidel versions of the preconditioner.

* For successive over-relaxation (SOR)/sysmmetric successive over-

relaxation (SSOR). An over-relaxation parameter is inserted in the matrix
splitting.

D=L+U-1=(L-1)+(U -1)+1

1 1

= (L)1 U 1)+ o) = 1+ o(L-1)]" D1+ oV -1)]
‘f SSOR preconditioned
=;([1+a)(L—1)]+[1+a)(U Dlrew-2) @ OR parameter: 1<w <2

Asian School on Lattice Field Theory
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4. Parallelization

All example codes are written for a single process execution.

For a realistic LQCD simulation, we need more computational power.
Parallel computation using multiple process is needed.

The most timing consuming part of LQCD is the quark solver. Thus at first
parallelizing the quark solver is a good experience before parallelizing
whole LQCD related programs.

Solver example coeds can be parallelized in two manners.
— Parallelization by MPI (Message Passing Interface API).
* This is based on SPMD (Single program multiple data) model
— Parallelization by OpenMP

* This is directive based thread parallelization. This is usefull for
Single CPU with Multi-cores to fully drive all cores.

To test the parallel codes with MPI, we need parallel computer

environment. If your Linux Desktop contains OpenMPI package, you can
emulate the parallel environment (even if your PC has single CPU).

To test OpenMP thread parallelization, A compiler that can understand the OpenMP
directives is needed. Unfortunately the level of OpenMP compliance of GNU compiler is
still low. The latest GNU complier is at almost satisfactory level, common Linux
distributions do not contain this latest version.....



4. Parallelization

 Here | only explain how parallelize quark solver using MPI.

* | employ again the 1D Wilson like equation as a target
problem to be parallelized.



4. Parallelization

* 4-1. MPI parallelization

Multiple process using an identical program executable.

Run the program code in parallel.
Each running process has its own identifier : so called MPI RANK
number.

Each running process can communicate to/from other processes
through the MPI API routine calls. The data to be send/received are
called a Message.

To identify the destination or the source of a message, we use the MPI
RANK.



4. Parallelization

2011@TIFR

e 4-1. MPI parallellzatlon Messages
MPI_Allreduce —_
MPI_Send Op= +/max... Src. Dst.
RANK-0 RANK=D > >
MPI_Recv _ _
Proc.#2 Proc.#2 : Proc.#2 :
RANK=1 RANK=1 RANK=1
Single
Program Proc.#3 Proc.#3 E Proc.#3 & Proc.#3 :
testMPI RANK=2 RANK=2 RANK=2 RANK=2
MPI_Send
Proc.#N Proc.#N E Proc.#N Proc.#N E
RANK=N-1 RANK=N-1 RANK=N-1 RANK=N-1
MPI_Recv
% mpirun —np N ./testMPI
Time
MPI_Init MPI_Send MPI_Allreduce MPI_Finalize
MPI_Comm_size
MIP_Comm_rank MPI_Recv MPI_Barrier
2013/1/31 Asian School on Lattice Field Theory 47



 4-1. MPI parallelization

— To parallelize the quark solver we need to know the usage
of the following limited MPI routines.

MPI_Init MPI_Send MPI1_Allreduce

MPI_Comm_size

MIP_Comm_rank MPI_Recv MPI_Barrier

MPI_FInalize

Global
: 1-to-1 Communication communication
MPI environment
iflrlglué)nvironment These are to be used to Global summation.
exchange data missing Barrier wait.

request

) in current process.
These routines P

should be called at

Used in the inner-

. . Used in product operation
I:Zt;rr;(;f;nljﬂ " Wilson-Dirac matrix in the solver.
multiplication. Used to take a
timing at W.-D.
matrix

multiplication.

Asian School on Lattice Field Theory
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e 4-1. MPI parallelization
* Asanexample: 1D Helmholz equation. (N:=8 case)
— Data(vector) are sliced into several pieces (humber of processes=4).

avector:v  v(1),v(2),v(3),v(4),v(5),v(6),v(7),v(8)

pd y \ “\y

vi).v(2)  v@).v(4)  v).v(6)  v(7),v(8)

Local array | v(1),v(2) v(1),v(2) v(1),v(2) v(1),v(2)
V(122) MPI RANK MPI RANK MPI RANK MPI RANK
N, =2 RANK=0 RANK=1 RANK=2 RANK=3
n=i+N g xRANK =i +2xRANK Global site index n
_ Local site index i
| =mod(n—1,N ¢ )+1=mod(n-12)+1 Index conversion eq.

— All numerical vector operation are applied to the local arrays. The local
index is useful. If you need the global site index, you can recover it
using the MPI RANK number and local site index.

Asian School on Lattice Field Theory
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* 4-1. MPI parallelization

e 1D Helmholz equation. (N¢;=8 case)

Local array
v(1:2)
Nygire=2

v(D),v(2),v(3),v(4),v(5),v(6),v(7),v(8)

e

v(D).v(2)

v(1),v(2)

MPI RANK
RANK=0

J

v(3),v(4)

v(1),v(2)

MPI RANK
RANK=1

\

v(5),v(6)

v(1),v(2)

MPI RANK
RANK=2

\y

v(7),v(8)

v(1),v(2)

MPI RANK
RANK=3

— Matrix vector operation (W = (— A+ Kz)\/ ) needs nearest
neighboring data. It has been used a ghost site technique to simplify
this data communication.

Local array is extended to both sides as v(0:3). The extended sites
are called “Ghost sites”.

v(0),v(1),v(2),v(3)

MPI RANK
RANK=0

v(0),v(1),v(2),v(3)

MPI RANK
RANK=1

v(0),v(1),v(2),v(3)

MPI RANK
RANK=2

v(0),v(1),v(2),v(3)

MPI RANK
RANK=3

2013/1/31
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4-1. MPI parallelization

2
* 1D Helmholz equation. (Ng=8 case) W = (—A +K )\/

v),v(2)  v(@),v(4) v(d),v(6)  Vv(7),v(8)
w@d),w(2) w(3),w@4) wGB),w(6) w(7),wW@8)
vovvve) | [Vovmvave] [vovmvave) ] [vovnv)ve)
woLw(D)w2wE)|  [woLw),wwi)|  [wo),wnwwi)|  [wo)wd)w2)ws)
MPI RANK MPI RANK MPI RANK MPI RANK
RANK=0 RANK=1 RANK=2 RANK=3
vt W) Wy vz v W) Wy vz v
\Li\vu) v(2) v(3)/ \@\:) v(2 v(3)/ \ '\
v(O) Vv( 1 v(2) v(3 v(i0) v(1) wv(2) v(3)
o— O O —0
W) Wy vi2 \%l (0) v v lxl /
\ 0) w(1) w(2) W(Nx (0) w(1 wi2)  w(3)
O —O
W(O w(1) W(2) W(3) W(2 w(3 All differential

Asian School on at ice Fleld Theory
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e 4-1. MPI parallelization
e 1D Helmholz equation. (N¢;=8 case)

UP_RANK=mod(RANK+1,N,,)
DN_RANK=mod(RANK—-1+N,;;, Nyp)
call MPI1_Barrier(........ )

iIf (mod(RANK,2) ==0) then

call MPI_Send(v(2),1, MPl_REALS,UP_RANK.....)

call MP1_Send(v(1),1, MPI_REAL8,DN_RANK,

call MPI_Recv(M0),1, MPI_REAL8,DN_RANK

call MPI_Recv(M3),1, MPI_REALS8,UP_RANK,
else

call MPI_Recv(M0),1, MPI_REAL8,DN_RANK

call MPI_Recv(M3),1, MPI_REALS8,UP_RANK,

call MP1_Send(v(2),1, MPl_REALS,UP_RANK......)

call MPI_Send(v(1),1, MP1_REALS,DN_RANK,
endif
do i=1, N sime
w(i) = —v(i +1) + (2+ 2 V(i) - w(i -1)
enddo

W:(—A+K2)\/

Compute Upward RANK number
Compute Downward RANK number

IF RANK number is a even number
15t :send data to odd number RANK
processes

29 :receive data from odd RANK
processes.

IF RANK number is a odd number
15t :receive data from odd RANK
processes.

2" :send data to odd number RANK
processes

Asian School on Lattice Fielq
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Send and Receive processes should be
paired in the 1-to-1 communication.
Otherwise we encounter a process
deadlock.

This even/odd pairing manner is a well
used programming pattern.




4-1. MPI parallelization
1D Helmholz equation. (N ;=8 case)

W = (— A+ K?
vi),v(2)  v(@),v(4)  v(),v(6)  v(7),V(8)
w@),w(2) w@),w(4) w(®),wb) w(7),w(@8)
v(0),v(1),v(2),v(3) v(0),v(1),v(2),v(3) v(0),v(1),v(2),v(3) v(0),v(1),v(2),v(3)
w(0),w(1),w(2),w(3)] [w(0),w(1),w(2),w(3)] |w(0),w(1),w(2),w(3)] |w(0),w(1),w(2),w(3)
MPI RANK MPI RANK MPI RANK MPI RANK
RANK=0 RANK=1 RANK=2 RANK=3

CG/BiCGStab/any Krylov algorithms use inner product operations. This is
done as

prod=0.0 prod=(v|w)
rtmp=0.0 -
. All MPI process obtain the same
do i=1, NLSITE . .
) _ numerical number in the “prod”
rtmp = rtmp+ v(i) * w(i)
enddo
call MPI1_Allreduce(rtmp,prodl, MPI_REAL8,MPI_SUM,....)
, return!prod s

2011@TIFR



e 4-1. MPI parallelization
* 1D Helmholz equation. (N =100 case)

* Fortran program:
[http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/MPI_Helmholz1DCG.tar.gz]

1D Helmholz equation CG solver (MPI ver.), residual history 1D Helmholz equation CG solver (MPI vs single), solution vecto
0
10 = A LI L T T Trrrr T LI T T L 0 g
o T ] 10 MPI ver.
102 | T y single ver.
10° | T : 10
107 | T 102 |
107§ —
= 10° | s 1 S
é 10'7 . \M‘T , 8 10
: - =
2 108} | 1 107
10 |
1070 F | 107 ¢
10'12 r | 1
1072 | 10° ¢
10713 | | 1 5
10‘14 ......... | IR T R | IR R R | IR S S | I R S | R S S T 1 10'7 ........ | FFEE R | TR Laaaaaaas | TR | TR RN Lasssaaaay | FFEEERREE | TR | TR 1
0 10 20 30 40 50 60 10 20 30 40 50 60 70 80 90 100
CG iteration count X

We have to check the consistency to the non-parallel version in parallel programming.
It is more better to check the consistency by varying the number of processes.
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Thank you!
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(1)
(2)

(3)

(4)

(5)
(6)

Problems

Try to extend the 1D Helmholz solver to 2D or 3D versions.

Try to extend the 1D Wilson like equation solver to a 4D Free
Wilson-Dirac quark solver. In this case we need complex
number operations and vectors. You have to extend or slightly
modify the BiCGStab algorithm for complex non-Hermitian

matrixes. (v|w)=(w|v) for complex vectors.

Try to write a SSOR preconditioned solver for 1D Wilson like
equation solver.

Parallelize the 1D Wilson like equation solver if you can use
MPI| environment.

Parallelize the 2D/3D Helmholz solver.

[Advanced] How about the SSOR preconditioner in parallel
case?
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