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1. HMC in Lattice QCD
1-1 LQCD

– Gluon and quark fields are defined on a lattice.

– Quarks are described with fermionic spinor fields with color d.o.f.

– Gluons are described with bosonic color matrix  fileds.
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• Euclidean path-integral partition function
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Quark field.   SU(3) fundamental rep.  
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several quarks. (u,d,c,s,t,b)
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• Typical LQCD action. (K.G.Wilson 1974)
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Wilson Gauge action. (Gluon)
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• Observables in LQCD
– Weighted averaging for Hadronic opertors

– This integral contains Grassmann variables q. This cannot be treated 
numerically on computers.

– Analytic integration on Grassmann variables q is possible when the 
action is bilinear of q. This is OK for LQCD.

– operators in the observables are all replaced to corresponding 
quark propagators                          [= inverse of Dirac operators].
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• Thus the average is obtained by integration on                 with the 
weight  

• This weight is constructed to be real and non-negative.  With the 
Wilson gauge action the exp weight is real and non-negative.

• The determinant of the Lattice Dirac operator appears in the weight. 
The determinant is also real in the standard setup. However it 
causes difficulty with negative/complexe values in some cases 
(finite density simulation).

• For Wilson Dirac fermions the determinant is not protected from 
negative value. However sufficiently large quark masses it is 
positive real. 

• What we have to do is MCMC simulation with the weight W[U]. 
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1-2 MCMC for the continuous state/probablity case.
• As seen before  we need to generate ensemble for {U} with the weight

• More precisely the probability density

• Hybrid Monte Carlo (HMC) algorithm is used for this purpose.

• To explain the basics on the HMC algorithm, we simplify the notation by 
introducing corrective real scalar coordinates                     .  

2011/3/8
Asian School on Lattice Field Theory 

2011@TIFR
7

 ][exp]][det[][
,,

USUDConstUW G

sduf

f  


   














 







,,,,

)(][exp]][det[Const)(][
n

G

sduf

f

n

ndUUSUDndUUW

 )()3()2()1( ,,,, NUUUU  


 
N

j

jj UDUO
N

UDUO
1

1)()(1 ]][,[
1

]][,[

}{U


 )()3()2()1( ,,,, N



   




N

j

jO
N

SOd
Z

O
1

)( )(
1

)(exp)(
)0(

1
)( 








• The basic idea of HMC comes from statistical mechanics.

• Constant  expressed by Gaussian integral

• Multiply this constant to the partition function

• This is identical to the Canonical ensemble estimator mathematically.

2011/3/8
Asian School on Lattice Field Theory 

2011@TIFR
8

 

 )(exp)(
)0(

1
)(

)(exp)0(












SOd
Z

O

SdZ

















  2

exp
2






dC

 ),(exp)(
2

exp)0(
2







HddSddCZZHMC 
















 

 ),(exp)(
1

)( 


HOdd
Z

O
HMC

 




  tod.o.f same having coordinatescalar  real   :  



• We can use Metropolis algorithm to generate ensemble for random 
variables            .

• For good Metropolis test acceptance rate, generating candidate state                  
requires small energy change 
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2. Hybrid Monte Carlo (HMC)



• We know that the canonical ensemble reproduces  the identical prediciont
to the Micro canonical ensemble in the thermodynamic limit.

• The average with the Micro canonical ensemble can be expressed as

• Where  τ is a fictitious time for micro canonical ensemble and                  is 
treated as the canonical momentum to the            . 

• The dynamics  of                            is governed by the Hamitonian

• And equation of motion:

• We can use this property to generate candidate state                from              .
– Initial condition  :

– Fictitious time evolution via Hamiltonian eq. of motion :     

– Candidate for Metropolis test :
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• HMC algorithm

• In step 2, we can directly generate the fictitious momentum from Gaussian distribution as it should 
be.

• Step 3 requires the numerical integration on Hamilton eq. of m. This is called as the Molecular 
dynamics (MD) integration/evolution. This violates the energy conservation. Thus the Metropolis 
test is required.

• Step 3 corresponds to the candidate generation. The transition prob. for this candidate generation 
should be symmetric                    to satisfy the detailed balance (Lect#1).   Thus the MD integrator 
should be revertible and at the end of time evolution the momentum should be reversed.

• In step 4,  the momentum is not stored to the ensemble since it is not required for observables.
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• The efficiency of the HMC algorithm depends 
on the numerical MD integrator performance.

– Time reversible (and area preserving)  integrator. 

– Smaller energy conservation violation with larger 
time step.

– The most time consuming part of the MD 
integrator is the computation of force.

• We need better MD integration scheme.
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HMC  =  MD integrator + Metropolis algorithm 



• We need to integrate the following Hamiltonian equation of 
motion.

• Simple Runge-Kutta method is not time reversible. This 
cannot be used for HMC.
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3. MD integrators
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• Properties of Hamiltonian dynamics.
– Poisson brackets.

– Define Liouville operator L :

– Hamiltonian eq. of m.
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• Properties of Hamiltonian dynamics.
– Formal solution of Hamilton equation.

– Where

– Finding a time reversible and area conserving MD 
integration  integrator == finding simple approximation for 
time evolution operator                           .  
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• Approximation for the time evolution op.
– Our Hamiltonian is composed of  Kinetic term T and potential term S.

– The Hamiltonian Lioubille operator can be decomposed to two parts.

– Time evolution operator 

– We can approximate this operator as
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2/2/)(  ABABA eeee  A symmetric decomposition 
of Matrix Exponential. Leapfrog Scheme



• Properties of the Leapfrog Scheme
– Leapfrog time evolution operator ULF :

– The Kinetic and potential exponential operators are exactly 
computable and invertible.

2011/3/8
Asian School on Lattice Field Theory 

2011@TIFR
17

 0

)(


)(


)0(


)0(


  











 
























































)(

)()0(

)(

)0(
)(

)(

)0(

)(

)0(

exp)(exp
t

t

t

t

ttT QiL



















 


















  







































































)(
)(exp)(exp

)()0(

)(

)0(

)(
)(

)0(

)(

)0(

)(

t

tt
t

tt

V
F

FPiL



















 


















11 )()(1)()(   ,)()(1)()(    PPPPQQQQ

 
MDN

H QPQUiL 






 



 )

2
()()

2
()(exp LF









• Properties of the Leapfrog Scheme
– Thus the Leapfrog operator ULF is invertible.
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Half time step evolution at first and last on φ is important 
to ensure the reversibility.



• Properties of the Leapfrog Scheme
– The leapfrog time evolution operator is one of the approximation for 

true time evolution op.  

– This operator violates energy conservation low.

– We can analyze the accuracy of the approximation using the Backer-
Campbell-Hausdorff formula for matrix exponential.

– Here we defined a Shadow Hamiltonian . The discrepancy 
from the true Hamiltonian is 

– We expect                       violation on the energy conservation low. This 
affects the Metropolis test acceptance rate directly.
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Problem 1



• Area preservation of the Leapfrog Scheme
– The candidate generation should preserve integration measure in the 

continuous case  to preserve the transition probability.  This means

– The area preservation holds for the leapfrog scheme. To prove this 
property,  it is sufficient to consider the time evolution for a single 
time step. 

– The Jacobian of this transformation is proved to be 1.
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Known as Liouville’s
theorem in analytical 
mechanics



• Time reversal and momentum flip in the MD 
integrators
– The MD integrators should be constructed to be time reversible and area 

preserving.

– We can integrate back on the same trajectory by flipping the Momentum.

– This means

– In the phase space.
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Note: The operation of R is usually irrelevant for H value.
The R operations are often omitted in the HMC algorithm.



• Acceptance rate
– The leapfrog scheme has a O(Δτ2) error.  

– Rejection occurs in the Metropolis test.   How large/small is it?

– Consider the partition function:

– A MD integrator+momentum flip moves/maps                     to                     as

– Considering this MD evolution as a variable change for the partition function, 
we have
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4. Properties of the HMC algorithm



• Acceptance rate of the HMC Metropolis test

– From                      ,  we can estimate the acceptance rate by assuming a 
Gaussian distribution for                        (as a random variable).

– From the problem  #(5) of Lecture 1 we can estimate the averatged
acceptance rate as

– For the Leapfrog MD integrator  we have                      and

– Thus 
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• HMC transition probability for 
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Candidate generation probability
This is deterministic via MD 
integration.
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Satisfies the detailed balance condition

π’ is generated with Gaussian.   
π and π’ are integrated out 
since they are not measured.
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Problem 3



5. Examples
(1) Gaussian distribution with HMC

– transformation to the HMC weight.

– MD system becomes a Harmonic oscillator
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(1) Gaussian distribution with HMC
– MD system becomes a Harmonic oscillator

– Equation of Motion

– Leapfrog integrator
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When                          , the MD evolution becomes unstable. 
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 2 Problem 4



(1) Gaussian distribution with HMC
– Algorithm

– For a Harmonic oscillator  HMC algorithm is rather trivial.  The 
Gaussian distribution of π is transmitted to φ distribution. 
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5. examples

(2) 2-site scalar model
– Partition function

– Observables
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(2) 2-site scalar model
– In HMC, this corresponds to the coupled two Harmonic oscillators.

– Fortran Program                                                                               
[http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/2SiteScalarHMC.tar.gz]

– 10,000,000 samples are generated.  But we save 10,000 samples with interval 100.  We 
use τ=2, NMD=4 for candidate generation.

• State weight/histogram generated via Metropolis algorithm
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• State weight/histogram generated via Metropolis algorithm
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• State weight/histogram generated via Metropolis algorithm

2011/3/8
Asian School on Lattice Field Theory 

2011@TIFR
31

HMC measured Theoretical



• State weight/histogram generated via Metropolis algorithm
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• State weight/histogram generated via Metropolis algorithm
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• Spin average/Spin correlation history

2011/3/8
Asian School on Lattice Field Theory 

2011@TIFR
34

Spin average

Spin correlation



• dependence of expectation values

– Statistical averaging reproduces theoretical results.

– Acceptance rate is about 90% for this simple model.
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6.  HMC for LQCD
• For LQCD we can employ HMC algorithm to generate link 

variable ensemble.  However several non-trivial issues still 
remain.
– (1) We have to introduce fictitious momentum for link variables for 

MD evolution. This is not trivial as scalar variables because link 
variables U take SU(3) values. How can we introduce the fictitious 
momentum?

– The Gauge action is expressed  in local form.  However  the quark 
determinant term has non-local form/non-trivial dependence on link 
variables. How can we incorporate the determinant  in the MD 
evolution?

– I simply give the answers for these questions.
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6.  HMC for LQCD

6-1   MD momentum for U  (SU(3) matrix)
– Consider single U for example.

– In order to move in the SU(3) compact phase space, we have to 
introduce group manifold.

– U can be expressed as

– We define the time derivative of U as

– This corresponds to 

– Where            is the momentum  for        .

– We use                  for the MD evolution instead of                 although we 
have introduced          for        .  
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6.  HMC for LQCD

• How to derive the equation of motion?
– The kinetic term is introduced as

– Where we used the following generator. 

– The force expression is non-trivial  since we use                as  variables 
to be evolved.  (we need derivatives w.r.t. SU(3) matrix U.)

– To avoid derivatives w.r.t. U,  we may force Energy conservation low to 
the Hamiltonian with the definition of momentum.

– From this we can extract the equation of motion for        . 
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• HMC for Single SU(3) matrix model
– Partition function:

– Observables:

– HMC

• Hamiltonian eq. of. M.
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• HMC for Single SU(3) matrix model
– HMC Molecular dynamics

– Coordinate  ( ) update:
• Solve                         for          with constant         approx.

– Momentum (     ) update:
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6.  HMC for LQCD
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UiU  Numerical evaluation of 
Matrix exponential is 
required.
Taylor expansion method.
Diagonalization method.



Simply add the force to 
the momentum as usual.
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exp
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Note: In order to be U in SU(3) matrix.  
Re-orthonormalization and  det[U]=1 
condition is forced in the MD evolution.





• HMC for Single SU(3) matrix model
– Fortran program: [http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/SingleSU3MatrixHMC.tar.gz]

– SU(3) matrix eigenvalues phase distribution: (100000 trajs, 10000 

samples,10-intervals, NMD=4, tau=1)
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6.  HMC for LQCD

HMC measured Theoretical

0),,,( 321321  



• HMC for Single SU(3) matrix model

– SU(3) matrix eigenvalues phase distribution:
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6.  HMC for LQCD

HMC measured Theoretical
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• HMC for Single SU(3) matrix model

– SU(3) matrix eigenvalues phase distribution:
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6.  HMC for LQCD

HMC measured Theoretical
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• HMC for Single SU(3) matrix model

– Oberevables:

– HMC history
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6.  HMC for LQCD

 2]ReTr[2   and   ],ReTr[2 UU

]ReTr[2 U

 2]ReTr[2 U



• HMC for Single SU(3) matrix model

– Oberevables:

– Beta dependence of the expectation values.
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6.  HMC for LQCD

 2]ReTr[2   and   ,]ReTr[2 UU

]ReTr[2 U  2]ReTr[2 U

Check the SU(3) matrix related computations in the  program
 Projection to Traceless-Hermitan,
MatrixExp,  
Orthonormalization&det[U]=1 condition, ….

Note that the HMC algorithm flow is identical to that of 2-site scalar model.

How about for LQCD?



6.  HMC for LQCD

• How to derive the equation of motion for LQCD?
– For Wilson gauge action:

– We obtain
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Traceless condition is forced 
explicitly for numerical stability

Problem 7



6-2  Quark Determinant incorporation in the 
HMC
– The matrix size of quark operator is extremely large. Thus 

the exact/analytic computation of the Determinant is 
impossible.

– Stochastic estimate of the determinant have been used in 
the HMC for LQCD.

– The most common stochastic method is                                         
the “Pseudo-Fermion method”.

– Here I Briefly explain the pseudo-fermion method.
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6.  HMC for LQCD

:][UD A Lattice Dirac operator is a complex matrix 
with dimension :

Typical DIM = 3x218 ~ 800000 = for 164 lattice

 XYZT NNNN 43



• Pseudo-Fermion method.
– The determinant of a matrix can be expressed by a integral 

of scalar field.

– If A is Hermitian and positive                               can be  
treated as a probability distribution for              .

– For Quark determinant with 2-flavor (up,down) with 
degenerate masses. We can transform the determinant to 
the integration of complex scalar variables.
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6.  HMC for LQCD

 


AddC
A

††   exp
]det[

1
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Complex scalar field(=Complex vecotr)

Complex Matrix (Non-singular)

 


A†exp

),( 


†



• Pseudo-Fermion method.

– Where are used.

– are called as the Pseudo-fermion field.

– The pseudo-fermion field is incorporated in the random variables.  Thus we 
have to generate the ensemble for ..

– In order for                                to be  a probability, we have used the positivity 
and realnelss of  (det[D]det[D])  using  two quarks with the identical masses.  
For odd-number flavor simulations tricks are required to introduce the 
pseudo-fermion. (I will skip this issue.  See Polynomial-HMC, Rational-HMC)
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6.  HMC for LQCD
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• HMC algorithm for Two-flavor LQCD

– HMC algorithm is applied to                                     .
• The momentum          is introduced only for         . 

• are treated as a auxiliary field and not evolved during  the 
MD.                     are generated directly by the disitribution
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6.  HMC for LQCD
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• HMC algorithm for Two-flavor LQCD

• Note 1:  We have new contribution from SPF term in the MD evolution. The 
force computation is required.

• Note 2:  We need inversion computation                           to evaluate SPF value.
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6.  HMC for LQCD
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• Pseudo-Fermion Contribution to the MD.
– We can derive the MD force expression via

– as before.
– Evaluating

– We have

– where 

– Thus we need two-inversion computation to evaluate  the MD force  
from the pseudo-fermion at every time step.
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6.  HMC for LQCD
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This is the most time consuming part of LQCD simulations
Problem 8



• In the last lecture I will explain the methods to invert 
the lattice Dirac operator D[U].

• However the explanation using the explicit form of 
D[U] is rather tedious. I will explain the common part 
of the algorithm to invert more simple lattice 
discretised differential operators.

• I will employ the Poisson equation on discretized
space(=3D/2D/1D lattices).
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 ][UD

 11][   UD

Lattice Dirac equation with source term Lattice Poisson equation with source term



Problems
(1) Check that the Leapfrog scheme has the error term explained in [page 

19].

(2) Check that the Leapfrog scheme satisfies the area conservation low 
[page 20].

(3) Check the detailed balance condition for the HMC transition probability 
described in [page 23].

(4) Evaluate the eigenvalues of the MD transition matrix for a Harmonic 
Oscillator [page 26].  When does the evolution become unstable?

(5) Get and compile the 2-Site Scalar model. Check the result numerically. 
[page 28-35]

(6) Get and compile the Single SU(3) matrix model. Check the result 
numerically. [page 39-45]

(7) Derive the MD force expression for the Wilson gauge action (quenched 
LQCD) [page 46].

(8) [Advanced] Derive the MD force from the pseudo-fermion part with the 
Wilson-Dirac action [page 52][page 4 for the explicit form of D[U]].
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Backups
• SU(3) matrix from su(3) matrix.

– We need to compute SU(3) matrix from su(3) 
Hermitian traceless matrix via matrix exponential 
form.

– There are Two categories to compute this

• (1) method based on Eigen decomposition.

• (2) method based on Taylor expansion.
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 iaHV exp
parameter real   :

0]Tr[ and    :

a

HHHH †



Backups
• (1) method based on Eigen decomposition.

– H can be diagonalized and has real eigen values.

– The characteristic polynomial is

– We can diagonalize as

– We can compute the matrix exponential as

– This method needs some care when a pair of the eigenvalues nearly 
degenerates.  To avoid loss of significant digit in the computetion some 
special formula should be used.
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Backups
• (2) method based on Taylor expansion.

– Any matrix exponential are defined as 

– We can truncate the series at

– However |aH|>1 case the loss of significant digit occurs when 
computing the series even if we use Horner’s method.

– We make use of the ideintity:
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Backups
• (2) method based on Taylor expansion.

– We make use of the ideintity:

– Divide and Squaerd method.

– 12th-14th order expansion 

is sufficient for the approx.

However this part can be

further economized as follows.

2011/3/8
Asian School on Lattice Field Theory 

2011@TIFR
58

enddo

     

,1  do

1412,
2

expApprox

2

1

2
   s.t.  determin  

2

exp

VV

mj

N
iaH

V

iaH
m

m

m


























～

1

 

m

m

iaH
iaH

2

2
expexp 




















Backups
• (2) method based on Taylor expansion.

– From the characteristic polynomial, we have

– Cayley-Hamilton theorem leads

– Thus any analytic function of H  (f(H)) should have the following form.

– These coefficients {c_i} are computed via a kind of modulo 
computation for polynomial.
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Backups
• (2) method based on Taylor expansion.

– Instead of doing modulo computation for infinite series we compute

– {d’s} are computed as follows,

– Define the 2nd order polynomial of H as a vector expressed by the 
coefficients.

– We can evaluate next  H^(j+1) from using the Cayley-Hamiton theorem.
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This is a coefficient domain 
representation of a su(3) matrix 
function.



Backups
• (2) method based on Taylor expansion.

– Instead of doing modulo computation for infinite series we compute

– Thus we have
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Backups
• (2) method based on Taylor expansion.

– The matrix exponential is now expressed as
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Backups
• (2) method based on Taylor expansion.

– The computation of                                         is much easier and 
economical than                                  using Taylor series, 

because             is real and sparse.  And we need a vector multiplied form 
of                 in this representation. Finally we have
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