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1. HMC in Lattice QCD
1-1 LQCD

— Gluon and quark fields are defined on a lattice.
— Quarks are described with fermionic spinor fields with color d.o.f.
— Gluons are described with bosonic color matrix fileds.
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* Euclidean path-integral partition function

U (n) — (U (n)ab) Link field. SU(3) 3x3 unitary matrix.
H H Lattice vector field. Connects site N

N =—Pp— N+ and N+ /1. ;
b a U0
N ——n+ [

_ Quark field. SU(3) fundamental rep.
q(n) (q(n)a) lattice spinor field. Resides on site N.

a This may have flavor index f by introducing
N several quarks. (u,d,c,s,t,b)

z\.77.7)= [ [Tdamdam[dU,, () exp[-S qcolU. .01 +V U + 5.7 +7.0]

Local Gauge transformation. Local gauge transformation Integration Measure and

: SU(3) group matrix. : :
q'(n) = Q(n)q(n) ( )gg)( F; the action are Sefmed to be
U' (M =0MmU (MO(n4 i N gauge invariant.

« (M) (MU, (MmN -+ 42) SU(3) group invariant Harr
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e Typical LQCD action. .c.wilson 1974)
LQCD[U CI] G[U]+SQ[U1q1q]

SclU] = ,BZ Z(l—Tr[ ,(N)+P, (n)T]j Wilson Gauge action. (Gluon)

n u>v
P (n) = U, (MU, (n+ ,u)U# (n+ ‘;)TUVT (n) Plaguette P n+v
Field strength
B= 2N, _ 6 Inverse bare
g° g° gauge coupling. n -y
SQ [U aal= Z f D [U ](n m)q ( ) Wilson Fermion action. (qaurks)

f=u,d,s n,m

Df[U](n1m):§n,m_Kfz_[(l_yy (n) N+ 42,m (1+7/ypy(n_ﬁ)T5n—ﬂ,m]

Wilson-Dirac operator D. 1
Contains gauge covariant K¢ =
difference op.

Hopping parameter «
2(amf +4) No chiral symmetry.




e Observablesin LQCD

— Weighted averaging for Hadronic opertors O[U C_I q:l
S

(OU,4.q]) = == [ T da(mdam[ T dU, (MOWU.,q. qlexp|-S,oe V. 7. 4]
z|o]

— This integral contains Grassmann variables g. This cannot be treated
numerically on computers.

— Analytic integration on Grassmann variables q is possible when the
action is bilinear of g. This is OK for LQCD.

SQ[U,q,Q]ZqD[U]q

(O, DUT]) =~ zio/] j Hdu (NO[U, DUT™] [ det[D, [UTlexp[-Ss[U]]

f=u,d,s

— (Q operators in the observables are all replaced to corresponding
quark propagators (D[U ])—1 [= inverse of Dirac operators].
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2011/3/8

(O, PUTT)=— j Hdu (N)O[U, DUT™] [ ] det[D, [UTlexp[- S [U]]

f=u,d,s

Thus the average is obtained by integration on {U (n)} with the
weight

W[U]=Const [ [det[D,[UIlexp|—S.[U]]

f=u,d,s

This weight is constructed to be real and non-negative. With the
Wilson gauge action the exp weight is real and non-negative.

The determinant of the Lattice Dirac operator appears in the weight.
The determinant is also real in the standard setup. However it
causes difficulty with negative/complexe values in some cases
(finite density simulation).

For Wilson Dirac fermions the determinant is not protected from
negative value. However sufficiently large quark masses it is
positive real.

What we have to do is MCMC simulation with the weight W[U].
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1-2 MCMC for the continuous state/probablity case.

 Asseen before we need to generate ensemble for {U} with the weight

W[U]=Const [ [det[D,[U]lexp|-S.[U]]

f=u,d,s

* More precisely the probability density

W[U]HdU (n) = Constx( [ [ det[D, [UT1exp|- G[U]]j]‘[olu (n)

f=u,d,s

* Hybrid Monte Carlo (HMC) algorithm is used for this purpose.
N . .
VCNVICRVICRWNTIRY (o[u, D1 z%ZO[U(”, D[U 1]
j=1

e To explain the basics on the HMC algorithm, we simplify the notation by
introducing corrective real scalar coordinates ¢ «{U}.

{5(1),$(2),5(3),...,5(N)} <O(5)> Z(O) S(¢)]~ ZO(¢(J))
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e The basic idea of HMC comes from statistical mechanics.

2(0) = [dfexp|-S(9)]

(0(4)) = ziﬁ) [dgo(@)expl-5 ()] q
* Constant expressed by Gaussian integral C= _‘-dﬁ exp{— 7;}

7 : real scalar coordinate having same d.o.f to ¢

e Multiply this constant to the partition function
. . 2 . . .
ZHMC = Z(O)C — jdﬁd¢ eXp{_ (74‘ S(¢)j} — jdﬁd¢ exp[— H (7?’¢)]

1

(0(¢)) = -~ [ddgO(f) exp|-H (7. )]

ZHMC

 Thisis identical to the Canonical ensemble estimator mathematically.
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2. Hybrid Monte Carlo (HMC)
ZHMC(ﬁ)zjdﬁdq‘iexp[—H(ﬁ H+i-g| HE 475)=—+S(¢)

(0(g)) = [didgo(f)exp|-H (7.4)]

HMC(O)

 We can use Metropolis algorithm to generate ensemble for random
variables (7;’5)

{(ﬁ(l) P ). (ﬁ(Z) 3 ) (7—2»(3) 3O ) . (ﬁ(N) B )} W((7%, ) oc exp :_ H (%, 5)]

oy i o 7 — 7y |
p((7,4), (7. 4") =min{Lexp|- H (7. 4) + H(7".4"),
q((7,4)| (7',4')=? [Candidate generation prob.]

For good Metropolis test acceptance rate, generating candidate state (7, 4)

requires small energy change AH = H (7, ﬁ) —H (7', 5') ~0



* We know that the canonical ensemble reproduces the identical prediciont
to the Micro canonical ensemble in the thermodynamic limit.

* The average with the Micro canonical ensemble can be expressed as
- ] T -
(O()) = lim [ dzO(5)
T—00d0
—(7)

e Where tis a fictitious time for micro canonicalensemble and 7T is
treated as the canonical momentum to the ¢(T).

* Thedynamics of (7 4© is governed by the Hamitonian
X

H(ﬁ,q‘ﬁ')=§+s@>

* Andequation of motion: 4 s _ ;0 _ 9 0 S0y
dr dz
d ~(7) _ ~(z) 7(7) ~(z) 7(7)
— d s
i Tdd (7, ¢7) = ¢ H(7Z".¢™)

« We can use this property to generate candidate state (7,4) from (7',4").

— Initial condition : (*(0) ¢(0)) (7, 5)

— Fictitious time evolution via Hamiltonian eq. of motion : (7®,4) (7©, 4
tlmeevoluve

— Candidate for Metropolis test : (7,4) = (77, 4)
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e HMC algorithm
(step 0) Given initial state ¢.

—2
(stepl) Generateinitial momentum 7 with the probablity/Gaussian dist. exp(—%j

(step 2) Setinitial state (7”,4©) = (#,4), where ¢ is from latest ensemble.

(step3) Generate candidate state (77,4”) via integratin g Hamilton eq. of m.

: . — - - ~2 —
for a fixed time z. b =7, #=-VS(§), = H(# @) = %+ S(4).

(step 4) Do Metropolis test. If it is accepted (¢) is added to the ensemble.
If rejected (¢”) is added to the ensemble.

(step 5) Goto step 1.

* Instep 2, we can directly generate the fictitious momentum from Gaussian distribution as it should
be.

*  Step 3 requires the numerical integration on Hamilton eq. of m. This is called as the Molecular
dynamics (MD) integration/evolution. This violates the energy conservation. Thus the Metropolis
test is required.

* Step 3 corresponds to the candidate generation. The transition prob. for this candidate generation
should be symmetric 0ij =0 to satisfy the detailed balance (Lect#1). Thus the MD integrator
should be revertible and at the end of time evolution the momentum should be reversed.

* Instep 4, the momentum is not stored to the ensemble since it is not required for observables.
2011/3/8 Asian School on Lattice Field Theory
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* The efficiency of the HMC algorithm depends

on the numerical MD integrator performance.

— Time reversible (and area preserving) integrator.

— Smaller energy conservation violation with larger
time step.

— The most time consuming part of the MD
integrator is the computation of force.

HMC = MD integrator + Metropolis algorithm

 We need better MD integration scheme.
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3. MD integrators

* We need to integrate the following Hamiltonian equation of
motion.

4 G050 _ ddﬂ (70, §0) #

q q H (7, ¢):E+S(¢)
= =) _ —~(7) #(0)y — _ —(7) 1 (r)

17" 3 S(z,9°") ¢ H(Z™,¢"")

* Simple Runge-Kutta method is not time reversible. This
cannot be used for HMC.

(—>(0) ¢(0)) N (7—2:(7) ¢(r))

Runge-Kutta (—’(0) ¢(0)) " (_7—2:(27) , g(ZT))

( —(7) ¢(r)) (—>(2f),¢7(2r))

Runge Kutta

(( 70 FOY (7O, ¢(°)))¢q((*(0) ¢(0))|(_7z(r)’5(r)))



* Properties of Hamiltonian dynamics.
— Poisson brackets.

_oX 9y oX oY _ : -
{X,Y}= o0d o7 o7 03 X,Y : functions of (7,¢)
{X’Y}:_{Y’X}

{X,aY +bZ}=a{X,Y}+b{X,Z}
XA 232 X Y 33 +{Y {Z, X}}=0

Defines Lie algebra

— Define Liouville operator L : iL, X ={X,Y}
— Hamiltonian eq. of m.

d—¢={5’H}:+d—ﬂ:ﬁ d_¢:“—H¢7 7 e
dr d7z dr d (¢ _iL @
di . dH  dS d7 — prom I e LT
d—:{ﬂ',H}:——_.:——_. _:|L 7_2-’

T dog dg dr H

Asian School on Lattice Field Theory
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* Properties of Hamiltonian dynamics.

— Formal solution of Hamilton equation.

di[%j =1L, (%) ‘ (%j(f) = exXp [T <1l {%j(())
T\« 7T T 4

— Where exp(rxiL, )X = X +zxiL X +%2|(iI_Y)2X +%j(iL{)3X +...

= X +7{X,Y}+ %{{x Y} Y}+ %{{{x YIY1 4.

Similar formula for commutation bracket
in Quantum mechanics. Algebra is same.

— Finding a time reversible and area conserving MD
integration integrator == finding simple approximation for

time evolution operator exp[rx iL, ] .

Asian School on Lattice Field Theory
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* Approximation for the time evolution op.

— Our Hamiltonian is composed of Kinetic term T and potential term S.

H(7.6) =" +5(@)=T(#)+V($)
— The Hamiltonian Lioubille operator can be decomposed to two parts.
iL, X ={X,H}={X, T+V}={X, T}+{X,V}  [iL,iL,]X =0
=iL X +il, X

— Time evolution operator

— We can approximate this operator as

expr xiLy, |=explr x(iL; +il,, )

=~ | exp 4 xiL_exp d
2Nyo | N

MD

Note: L, and L; are not
commutable.

exp|z xiLy, |=exp[z x(iL; +iL, )]

NMD
xiLV}exp{ZNT XiLTﬂ
MD

a(A+B)S

ASI2 _BS - As/2 Asymmetric decomposition \

€ €€ of Matrix Exponential.

Leapfrog Scheme

2011/3/8
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* Properties of the Leapfrog Scheme

— Leapfrog time evolution operator U, :

explrxily, ]=U () = [Q(%)P(Ar)@(%)} N

— The Kinetic and potential exponential operators‘are exactly
computable and invertible.

(GO 3O o 0 [[69) (49 +arxz®
EXp[ATX”—T(ﬁ(t) =Q(A7) ~0 =exp| At x 7 6_5 o — 0

oy 50 IR 10 GO
exp|ATxil, {ﬁ(o)j = P(Ar)[ﬁ(o)j N exp{ATX F6") .E}(ﬁ(o)] B [7?(0) +AT X If(ﬁ(t))j

Q(7)Q(-7)=1-Q(-7)=Q(r) ", P(r)P(-7)=1—P(-7)=P(z)"

Asian School on Lattice Field Theory

2011/3/8 2011@TIFR

17



* Properties of the Leapfrog Scheme

AT Az, ™
— Thus the Leapfrog operator U is invertible. ULF(T){Q(7)P(AT)Q(7)}
Q(2)Q(-7) =1—-Q(-7) =Q(z) ", P(r)P(-7)=1— P(-7)=P(z)"
NMD

UL Vst0) = PRI Q(—%)P(—AT)Q(‘%)} MD

AT AT | At 4 AT T
=_Q(7)P(AT)Q(7)_ Q(7) P(A7) Q(7) }

=1

Half time step evolution at first and last on ¢ is important
to ensure the reversibility.

Asian School on Lattice Field Theory
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Properties of the Leapfrog Scheme

— The leapfrog time evolution operator is one of the approximation for
true time evolution op.

— This operator violates energy conservation low.

— We can analyze the accuracy of the approximation using the Backer-
Campbell-Hausdorff formula for matrix exponential.

N A+B+= [A B]+—([A[A B]}+[B[B,Al]) -
ee® ~ e : B.C.H. formula

At AT . Nmp

- Xy Arxily o 2 "
eXp[TX 1L, ] U(z)=|e 2 e e’ =E&xXp [TX L, (ShadOW)]

— Here we defined a Shadow Hamiltonian H ") The discrepancy
from the true Hamiltonian is

e L (1 frv 2, frv +o(m4)| problem 1

— We expect O(Arz) violation on the energy conservation low. This

affects the Metropolis test acceptance rate directly.
2011/3/8 Asian School on Lattice Field Theory
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* Area preservation of the Leapfrog Scheme

— The candidate generation should preserve integration measure in the
continuous case to preserve the transition probability. This means

Known as Liouville’s — A '[
theorem in analytical 7T T =
mechanics

d7dg| =dadg

7=0

7=t

‘%\Lv

— The area preservation holds for the leapfrog scheme. To prove this
property, it is sufficient to consider the time evolution for a single

time step. R N
(A7) AT . AT . (0)
¢ S AL, [ P
_ (A7) =€ e e ~(0)
7T T
— The Jacobian of this transformation is proved to be 1. Problem 2

Asian School on Lattice Field Theory
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* Time reversal and momentum flip in the MD
Integrators

— The MD integrators should be constructed to be time reversible and area
preserving.

— We can integrate back on the same trajectory by flipping the Momentum.

Y\ _
7 T=7

— This means U MD(T)f
r=(z¢) ©'=(#4)
I'=RU,,(z)T < RU, (o)["=T

R: momentum flip op. R(%,4)=(-7,4)

— In the phase space.

Note: The operation of R is usually irrelevant for H value. B
The R operations are often omitted in the HMC algorithm. "= (ﬁ', ¢')

Asian School on Lattice Field Theory
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4. Properties of the HMC algorithm

* Acceptance rate

2011/3/8

The leapfrog scheme has a O(At?) error.
Rejection occurs in the Metropolis test. How large/small is it? ~)

=
Consider the partition function: ZHMC (6) = Idf eEXP [— H (f ]

A MD integrator+momentum flip moves/maps T (7r ¢) to "= (*’ ¢’) as
['=RU,,(7)T

Considering this MD evolution as a variable change for the partition function,
we have

conservation violation should be 1 for area preserving

Expectation value of the exponential of the Energy
—AH
e =1
MD integrator.

[dF exp[- H(F)]= [dF"exp[- H ()= [d (RU ,oT) exp|- H(RU,,p1)]
= [dFexp[- H(RU,,pD)]= [ dF exp[- H (RU,o 1) + H (F) exp - H ()]

= [dl exp[- AH ]exp[— H (f)]
’ Asian School on Lattice Field Theory
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e Acceptance rate of the HMC Metropolis test

—  From <e‘AH > =1, we can estimate the acceptance rate by assuming a
Gaussian distribution for AH =x (as a random variable).

(x—p)° )
2 2
_ © _. e ?° — o
1=(e™)=| e~ =g 2 = ypy=—
e 2o’

— From the problem #(5) of Lecture 1 we can estimate the averatged

acceptance rate as
g @R (\/ﬁ j
=erfc >

Pec) jmln(leA”)—e K

VaAru

— For the Leapfrog MD integrator we have AH o« A7* and

ar( ) 2 2 4
(AH) =" ZAH ;(<AH >—<AH>)ocAr

™ [ o] BT

Asian School on Lattice Field Theory
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* HMC transition probability for ¢ « ¢'
Pinc(@14') =u($|8")+A-1($")S(¢ | 4')
u(@ 19 =] dﬁ[ I {p((ﬁ,@ (7.4 a((7.9)] (ﬁ',é"))ez}dﬁ'j

nt’is generated with Gaussian.

r(&’-) - J‘dgu (5 | %l) n.and nt’ are integrated out

since they are not measured.

,O((ﬁ 5) (7?' 5,)) — min (1 e_H(ﬁ,5)+H(ﬁ-,¢;-))) Metropolis test probability
I - () )t T Candidate generation probability
q((7,¢)| (7. ¢") =0((7,¢) —RUp " (Z',8'))  This is deterministic via MD
integration.

Pinc(@'19)e*@ =Pyc($14)e @

Satisfies the detailed balance condition

Problem 3

Asian School on Lattice Field Theory
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5. Examples
(1) Gaussian distribution with HMC

Z(n)=jd¢exp—8(¢)+n¢], s@) =07 L

(0(¢)) = = [ dgO(#) exp[- S (#)]

Z(0)

— transformation to the HMC weight.
Zyc(n) = [ drdgexp[-H (x,4) + n¢]

H(z, ¢)——+S(¢)——2+a)2¢—22

(O(¢)) = [ dzdgO(p) exp[-H (z,9)]

HMC(O)

2 2
— MD system becomes a Harmonic oscillator (7, 0) T 2 @



(1) Gaussian distribution with HMC P

: : H(x
— MD system becomes a Harmonic oscillator 2 2

— Equation of Motion . ) :
T=—-wQ, p=r

— Leapfrog integrator

exp[ArxiLT(ZJ=exp{mm;}@=(¢+imj:( Alf 2}@

—_— T
The Jacobian of this LF transformation is 1. AT = %\I,\,ID

When ‘Ar‘ > %) , the MD evolution becomes unstable. Problem 4

Asian School on Lattice Field Theory
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(1) Gaussian distribution with HMC
— Algorithm

(Step 0) Generate initial state ¢

(Step1) Generate initial momentum 7 from Gaussian dist.
(Step 2) MD evolution to get (7', ¢') from (7, ¢)
(Step 3) (flip momentum z'=-x")

(Step 4) Do Metropolis test with prob. P=min(Le ™™ ")

If accepted (¢ =¢') andadd (¢) to the ensemble.
If rejected add (¢) to the ensemble.

(Step5) Goto Stepl

— For a Harmonic oscillator HMC algorithm is rather trivial. The
Gaussian distribution of mtis transmitted to ¢ distribution.



5. examples

(2) 2-site scalar model

— Partition function

£ <1
e s +5,° ) _ —0< S, <O
Z(n):j_ dSexp| —| fs;S, + > +77-S 1

— Observables

2 2
<Sl-|—32> — 1_} dS S T S exp 183132 + m =0
2 | z(0)3= 2 2

1 s’ +s, || B
(8:8,) = Z(6)j ds(ssz)exp{ [,lesz+ 5 H_

Asian School on Lattice Field Theory
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(2) 2-site scalar model

— In HMC, this corresponds to the coupled two Harmonic oscillators.

— Fortran Program
[http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/2SiteScalarHMC.tar.gz]

— 10,000,000 samples are generated. But we save 10,000 samples with interval 100. We
use =2, N,,,=4 for candidate generation.

» State weight/histogram generated via Metropolis algorithm

HMC measured Theoretical
State Histogram 2-site scalar model (f=0.1) State Histogram 2-site scalar model (=0.1)
3 3
0.16
2 0.14 2
0.12
1 1
0.1
o
0 0.08 w0
1 0.06 p
0.04
-2 -2
0.02
0 -3

0.08

0.06

0.04

0.02



* State weight/histogram generated via Metropolis algorithm

State Histogram 2-site scalar model (p=0.2)

HMC measured

Theoretical

State Histogram 2-site scalar model (p=0.2)

2011/3/8
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* State weight/histogram generated via Metropolis algorithm

HMC measured Theoretical

State Histogram 2-site scalar model (p=0.4) State Histogram 2-site scalar model (p=0.4)

Asian School on Lattice Field Theory
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* State weight/histogram generated via Metropolis algorithm

HMC measured Theoretical

State Histogram 2-site scalar model (p=0.7) State Histogram 2-site scalar model (p=0.7)

5
0.12 0.12
4
0.1 3 0.1
2
0.08 0.08
1
0.06 &0 0.06
1
0.04 ” 0.04
3
0.02 0.02
4
0 5 0
5 4 3 2 4 0 1 2 3 4 5 5 4 3 2 4 0 1 2 3 4 5

s(1) s(1)

Asian School on Lattice Field Theory
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5(2)

QO =~ N W P 00 OO N @

State weight/histogram generated via Metropolis algorithm

HMC measured

State Histogram 2-site scalar model (p=0.9)

8 -7 -6 -5 -4 -3 -2

-1

s(1)

1

2 3 45 6 7 8

0.07

0.06

0.05

0.04

0.03

0.02

0.01

QO =~ N W P 00 OO N @

s(2)

|
—_

Theoretical

State Histogram 2-site scalar model (p=0.9)

8 -7 -6 -5 -4 -3 -2

b

-1

s(1)

1

2 3 45 6 7 8

0.07

0.06

0.05

0.04

0.03

0.02

0.01



Spin average

2-site scalar average sample history (2-site scalar model)

Spin average/Spin correlation history

2-site scalar average sample history (2-site scalar model)

2-site scalar average sample history (2-site scalar model)

n

—_

-

2-site scalar average (o, + 6,)/2
=}

n

—_

2-site scalar average (o, + 6,)/2
- =}

- B:b.4

n

—_

2-site scalar average (o, + 6,)/2
- =}

2t . 2t i . 2t .
10000 20000 30000 40000 5000( 10000 20000 30000 40000 5000( 10000 20000 30000 40000 50000
Sample number Sample number Sample number
2-site scalar correlation sample history (2-site scalar model) 2-site scalar correlation sample history (2-site scalar model) 2-site scalar correlation sample history (2-site scalar model)
4 3 Jaarecy : : . 2
- =0. I—
2F | ., ’ ' i 0 7
3 w o " v i -1 p
5 @ AT R E T2
<, < o A T APILI "R > 3P
g2 Lo L S&f* R I
= i c ¥ .i:m- -:Euﬁ?i ] c-5E .
Sq b 94 . oif T T S 5E !
= il =1 | L T [ T
© | © ' . 1 © -7
o |28 o2 R Y T8
50 fm 5 : = L 59
o : o3 i = 0 ©-10
5 : g | "o - i i 11
& Endt i 5 1 ER
Boh . i { [ 13 | ;
go | B @5 i . . 1 elr :
@ H ; E*G | H X | ¢_1g L l i
o ¥ H o ! o r i
-3 g H | A7 F § i
i T L] b -18 i l
| a8 | § ik
4 by L : ; 8 : : : : 20 : L AR L
10000 20000 30000 40000 5000 10000 20000 30000 40000 5000( 10000 20000 30000 40000 50000
Sample number Sample number Sample number
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2-site scalar average ((0,+0,)/2)

® [/ dependence of expectation values

— Statistical averaging reproduces theoretical results.
— Acceptance rate is about 90% for this simple model.
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Spin average Spin correlation
B dependence of 2-site scalar average (2-site scalar model) B dependence of 2-site scalar correlation (2-site scalar model)
0.1 T T T 1 O ___________ T 2
o T B/(1-B7)
S b
L >
c S
RS
-2t
o
0 T t £ + F 4 B
Q
g-3 }
1]
Q
[%]
Q
a4 F }
o \
:
-0.1 . . . . -5 .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
p P
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6. HMC for LQCD

For LQCD we can employ HMC algorithm to generate link
variable ensemble. However several non-trivial issues still
remain.

— (1) We have to introduce fictitious momentum for link variables for
MD evolution. This is not trivial as scalar variables because link
variables U take SU(3) values. How can we introduce the fictitious
momentum?

Z(0) = j_zDu [1detID[UTlexp[-Ss[V]] 17 for U 2

f=u,d,s

— The Gauge action is expressed in local form. However the quark
determinant term has non-local form/non-trivial dependence on link
variables. How can we incorporate the determinant in the MD
evolution?

— | simply give the answers for these questions.



6. HMC for LQCD

6-1 MD momentum for U (SU(3) matrix)

— Consider single U for example.

— In order to move in the SU(3) compact phase space, we have to
introduce group manifold.

— U can be expressed as

U=expfiA] Aesu@d), TrA=0, A'=A

— We define the time derivative of U as 0

—U =1/U
ot
— This corresponds to U(r)=T exp{ijdsH(S)}U (0)

— Where I/ isthe momentum for A.
ITesu@), Tril=0, 1 =171

— Weuse ([1,U) forthe MD evolution instead of ({7,A) although we
have introduced 71/ for A .
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6. HMC for LQCD

* How to derive the equation of motion?

— The kinetic term is introduced as

H(17,U) :%Tr[nn]+ S(U) :%28:(17&)2 1 S(U)

— Where we used the following generator.
Kinetic term normalization is

irrelevant for the MD

8
7 = ZHaT a TI‘[T aT b ] — % evolution. This simply changes
=1

the scale of fictitious time.

— The force expression is non-trivial since we use (/Z,U) as variables
to be evolved. (we need derivatives w.r.t. SU(3) matrix U.)

— To avoid derivatives w.r.t. U, we may force Energy conservation low to
the Hamiltonian with the definition of momentum.

iH(H,u)zo and 2U =imu
ot ot

— From this we can extract the equation of motion for /7.



6. HMC for LQCD

* HMC for Single SU(3) matrix model Analytic integration and

expressions are known.
— Partition function:

Z(B)=[dU exp[-S(U, B)]
SU,B)=-BTU+U"|=—28ReTrU]

— Observables: K
k\ 1 K . _ 1 0 Z(ﬂ)
(2ReTrU]) >_—Z(ﬂ) Jdu(2ReTr[U]Y exp( S(U))—Z(IB) o

— HMC HMC(IB) jdeU EXp[_H(H U ﬂ)]
H(HU)——Tr[HH]+S(U)—ZZ( 7°f +S(U)

a=1

* Hamiltonian eq. of. M. aiH(H’U):O and aiu =i/|J
0= aﬁ H(77,0)="Tr|rr7 - glirmu —u ' i) = Tel iz (17 -iplu -u "))
T
— |IB{ _M} and U =1//U Traceless and Hermitican property of
su(3) is imposed to the force
V=U —UT computation.
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6. HMC for LQCD

e HMC for Single SU(3) matrix model

— HMC Molecular dynamics . ,
y H:iﬁ{ —TrTM} and U =i/lU

V=U-U"'

— Coordinate (| ) update:
* Solve U =i//U for At with constant// approx. Numerical evaluation of

Matrix exponential is
Q(4r) 1 = t required.
U eXp [|Az- % H}J ’ ®Taylor expansion method.

®Diagonalization method.

— Momentum (/7) update:

P(Ar)[gjz[n+éfx FJ, F= iﬁ{v —Trg/]}v =U-U"'

Simply add the force to

Note: In order to be U in SU(3) matrix. the momentum as usual.

Re-orthonormalization and det[U]=1
condition is forced in the MD evolution.
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6. HMC for LQCD

« HMC for Single SU(3) matrix model

— Fortran program: [http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/SingleSU3MatrixHMC.tar.gz]

— SU(3) matrix eigenvalues phase distribution: (100000 trajs, 10000

samples,10-intervals, N,,,=4, tau=1)

HMC measured Theoretical
Eigenvalue angle Histogram single SU(3) matrix model (f=-1.0) Eigenvalue angle Histogram single SU(3) matrix model (f=-1.0)
6 0.1 6
5 0.09 5
4 0.08 4
3 | 3
0.07
=kl sk
+ 1 0.06 + 1
s} &
L 0 f 0.05 =0
o o
g1 0.04 =
o i o
0 _o N _o
0.03
-3 -3
4 0.02 4
5 0.01 5
-6 | 0 -6
6 5 4 383 2 1 0 1 2 3 4 5 6 6 5 4 3 -2 1 0 1 2 3 4 5 6
sqri(3/2)( 04 + 6,) sqrt(3/2)( 6, + 8,)

6,,6,,6,),0,+6,+6,=0
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6. HMC for LQCD

. HMC for Single SU(3) matrix model

— SU(3) matrix eigenvalues phase distribution: 0,60,,6,),0,+6,+6,=0

HMC measured Theoretical
Eigenvalue angle Histogram single SU(3) matrix model (=0.1) Eigenvalue angle Histogram single SU(3) matrix model (=0.1)
6 | 0.08 6
5 0.07 5
4 4
3 | 0.06 3
— 2| = 2
< 0.05 <
+ 1 + 1
C I -3
= 0 } 0.04 =0
o E o
=1 = -
T 0.03 5
1] -2 1] -2
3 | 0.02 3
4 -4
5 0.01 5
-6 | 0 -6
6 5 4 -3 2 1 0 1 2 3 4 5 6 6 -5 -4 -3 -2
sqri(3/2)( 84 + 6,) sqrt(3/2)( 0, + 92)

Theoretical distribution via
Weyl parameterization. p(8,,6,) oc sin 2(—91 ;92 jsin 2[—201; % )sin 2(—91 +2202 ]exp [23(cos 6, +cos 6, +cos(6, +6,))]
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6. HMC for LQCD

. HMC for Single SU(3) matrix model

— SU(3) matrix eigenvalues phase distribution: 0,60,,6,),0,+6,+6,=0

HMC measured Theoretical
Eigenvalue angle Histogram single SU(3) matrix model (§=2.5) Eigenvalue angle Histogram single SU(3) matrix model (§=2.5)
6 | 0.35 6 2000
5 | 5 1800
0.3
4 4 1600
3 3
0.25 1400
27 o
1 0.2 + 1 1200
C I -3
Lo =0 1000
o o
g1 015 g1 800
o H o
@2 @ -2
600
3 | 0.1 3
4 | 4 400
0.05
-5 -5 200
-6 § 0 -6 0
6 5 4 -3 2 1 0 1 2 3 4 5 6 6 -5 -4 -3 -2
sqri(3/2)( 84 + 6,) sqrt(3/2)( 0, + 92)

Theoretical distribution via

Wey! parameterization. p(8,,6,) oc sin 2(%)% 2[291_;92)5“] 2(%) exp[28(cos 6, +cos b, +cos(6, +6,))]



. HMC for Single SU(3) matrix model

2ReTr[U]

Oberevables:
HMC history

Single SU(3) matrix model 2Re[Tr[U]] sample history

6. HMC for LQCD

2ReTrU], and (2ReTrU]Y

Single SU(3) matrix model 2Re[Tr[U]] sample history Single SU(3) matrix model 2Re[Tr[U]] sample history

3 6 6
5 L
2 5
4 I
4
1 3t
5 22| =23
=t} E =
(5] (5] 1 (5]
o oc! | c2
o o o
-1 0
i
-1
-2 ol ol |
3 L . . . 3 L . . . A L . L .
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Sample number Sample number Sample number
Single SU(3) matrix model (:2Fh=_-[Tr[U]])2 sample history Single SU(3) matrix model (2Fie[Tr[U]])2 sample history Single SU(8) matrix model (2Fie[Tr[U]])2 sample history
8 T T T T T T T T T
e f=-1.0 = [=0.8 .
30 | i 5 30

(2Re[TUD*

200

(2ReTr[U]Y
2011/3/8

Sample number

o N
52 520
= =
E E

] 9]
o o
o S

.y
-
o

200

300

Sample number Sample number
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HMC for Single SU(3) matrix model

Oberevables:

6. HMC for LQCD

Beta dependence of the expectation values.

(2ReTr[U]), and <(2ReTr[U])2>

— 2
(2ReTr[U]) <(2 ReTrU]) >
B dependence of (2Re[Tr[U]]) (single SU(3) matrix model) B dependence of ((2Re[Tr[U]])2a (single SU(3) matrix model)
il Jpanan theoretical o 24 § - theoretical '
4 e 22 | )
v 20 } Pt
3 P 18 } o
~ e <16 | S
22 Vo S14 | v
5 Eq2 |
g K € 10| Va
T s “ el
0 ) /'/ 6 F //X
< 4t
-1 K
- o b T aon B )/;@é’
_2 L 0 1 1 1
-2 1 0 1 2 3 - 1 0 1 2 3
B B
Check the SU(3) matrix related computations in the program
® Projection to Traceless-Hermitan,
® MatrixExp,
®Orthonormalization&det[U]=1 condition, ....
Note that the HMC algorithm flow is identical to that of 2-site scalar model.
2011/3/8 Asian School on Lattice Field Theory 45
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— For Wilson gauge action:

— We obtain

2011/3/8

0

6. HMC for LQCD

* How to derive the equation of motion for LQCD?

SslU1=82 2,

n y>v(

H[/7,U]= %ZTr[Hﬂ(n)Hﬂ (M]+S.[U]

P, (n) zu,,(n>uv<n+u>uﬂ(n+ﬁ>*uv*(n)

0= 6—H(17U ZTr[H (mI7,(n)]+

0
= 5U)

—|U.m=imz, U, )

_ZTr[H ()17, (n) 17 ,(n)F, (n)] ZTr[H (n)(H (n)-F (n))]

17,(n)=F,(n)

iﬂ 1 / Traceless condition is forced
Fﬂ (n) = E(B/“ (n) _Vﬂ (n)T]_ éTrb/ﬂ (n) —Vﬂ (n)T D explicitly for numerical stability

V() =Y U, (U, (n+ U, (1+9)U, (n)" +U (WU, (1+ 2-9)'U , (n—$)"U, (n-7)]

VE L

Asian School on Lattice Field Theory
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6. HMC for LQCD

6-2 Quark Determinant incorporation in the
HMC

— The matrix size of quark operator is extremely large. Thus
the exact/analytic computation of the Determinant is

impossible. o _ _
D[U ] » A Lattice Dirac operator is a complex matrix

with dimension : (3><4>< N; x N, x N, x Nx)

Typical DIM = 3x2'8 ~ 800000 = for 16* lattice

— Stochastic estimate of the determinant have been used in
the HMC for LQCD.

— The most common stochastic method is
the “Pseudo-Fermion method”.

— Here | Briefly explain the pseudo-fermion method.



6. HMC for LQCD

Pseudo-Fermion method.

— The determinant of a matrix can be expressed by a integral
of scalar field.

= =c[dg'dgexp|-4"Ad]

¢ Complex scalar field(=Complex vecotr)

de t[A]

A Complex Matrix (Non-singular)

o

— If A'is Hermitian and positive eXp[_¢ A¢] can be
treated as a probability distribution for (47,¢) .

— For Quark determinant with 2-flavor (up,down) with

degenerate masses. We can transform the determinant to
the integration of complex scalar variables.



6. HMC for LQCD

Pseudo-Fermion method.

det[D, ]det[D, ] = det[D]det[D] = det[ D](det[D]’)
= [det[D]f" = det|(DD"
=C|[dg'dgexp|- 4'(DD'f ¢]

~c[dd'dgexp| (D)9 |

Where D' =7,Dys () =1, det[AB]=det[BA] are used.
(¢T,¢) are called as the Pseudo-fermion field.

The pseudo-fermion field is incorporated in the random variables. Thus we
have to generate the ensemble for (/7,U,4",4) .

2
In order for EXp[_‘D_W } to be a probability, we have used the positivity
and realnelss of (det[D]det[D]) using two quarks with the identical masses.
For odd-number flavor simulations tricks are required to introduce the
pseudo-fermion. (I will skip this issue. See Polynomial-HMC, Rational-HMC)



6. HMC for LQCD

HMC algorithm for Two-flavor LQCD

(O[U, DIUT™]) - ﬁ [TTdé' MdgmI U, m)

O[U, DUT™] exp|-Ss[U1-Spe U 4", 4.]]

SeelU. 8", g1 = ZZ D[U]) " tnm¢(m) =\(D[U])_1<5\2

— HMC algorithm is applied to Sg[U]+Se[U,¢", 4] .

 The momentum [/ isintroduced only for U .

(¢T ¢) are treated as a auxiliary field and not evolved during the
MD. (¢ ¢) are generated directly by the disitribution

-2
exp[ ‘D‘lqﬁ‘ }

¢=D[U]n, with Gaussian random number 7.
Proby’, ) o xp|-|
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6. HMC for LQCD

e HMC algorithm for Two-flavor LQCD

SpelU, 4", 41= (D) g
HUTU, ¢ 1= T, V7, (0] + SclUT+ S,elU 4,1

(Step 0) Generate initial state U
(Step1) Generate initial momentum /7 from Gaussian dist.
Generate pseudo - fermion field ¢ from ¢ = D[U ] with Gaussian dist'd 77 .
(Step 2) MD evolution to get (77',U") from (77,U)
(Step 3) (flip momentum 77'=-117")
(Step 4) Do Metropolis test with prob. P =min(Le™"™ ")
If accepted (U =U') andadd (U) to the ensemble.
If rejected add (U) to the ensemble.
(Step5) Goto Step 1

* Note 1: We have new contribution from S, term in the MD evolution. The
force computation is required.

* Note 2: We need inversion computation (D[U])_lg to evaluate S, value.

H I L . .
2011/3/8 Asian School on Lattice Field Theory
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6. HMC for LQCD

e Pseudo-Fermion Contribution to the MD.
ZHI7U ¢4

— as before.
— Evaluati 0 0 4=
HENE 1S s U gl= (D]

T or

~ Wehave 2 pp)ig - x (o 22 x } ~[he]= —_TrFD—[U] Xx' (DU Dlﬂ ~[he]
o7 ] or i ot

=— Tr[iﬂﬂuﬂ[aaDT[U]JXYf”_[h-c-: :Tr[_iﬁy FPFy]

U

— We can derive the MD force expression via 0=

‘ 2

— where

X =(DUI) "4, Y =(DUT) (DIV]) 6 = 75(DIU]) *75(DIUT) 6

— Thus we need two-inversion computation to evaluate the MD force

from the pseudo-fermion at every time step.
P ! " FPFﬂ:FPFﬂ[U’X1Y]

Problem 8

This is the most time consuming part of LQCD simulations |

Asian School on Lattice Field Theory
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* |Inthe last lecture | will explain the methods to invert
the lattice Dirac operator D[U].

 However the explanation using the explicit form of
D[U] is rather tedious. | will explain the common part
of the algorithm to invert more simple lattice
discretised differential operators.

* | will employ the Poisson equation on discretized
space(=3D/2D/1D lattices).

DlUlp=n<-4¢9=p

Lattice Dirac equation with source term Lattice Poisson equation with source term

p=DU] ' n=p=-A"p

Asian School on Lattice Field Theory
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

2011/3/8

Problems
Check that the Leapfrog scheme has the error term explained in [page
19].
Check that the Leapfrog scheme satisfies the area conservation low
[page 20].
Check the detailed balance condition for the HMC transition probability
described in [page 23].

Evaluate the eigenvalues of the MD transition matrix for a Harmonic
Oscillator [page 26]. When does the evolution become unstable?

Get and compile the 2-Site Scalar model. Check the result numerically.
[page 28-35]

Get and compile the Single SU(3) matrix model. Check the result
numerically. [page 39-45]

Derive the MD force expression for the Wilson gauge action (quenched
LQCD) [page 46].

[Advanced] Derive the MD force from the pseudo-fermion part with the
Wilson-Dirac action [page 52][page 4 for the explicit form of D[U]].
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Backups

e SU(3) matrix from su(3) matrix.

— We need to compute SU(3) matrix from su(3)
Hermitian traceless matrix via matrix exponential
form.

. H: H'=Hand Tr[H]=0
V =expliaH| ond TriA]

a. real parameter

— There are Two categories to compute this
* (1) method based on Eigen decomposition.
* (2) method based on Taylor expansion.



Backups

* (1) method based on Eigen decomposition.

— Hcan be diagonalized and has real eigen values.
— The characteristic polynomial is

det|[H —1]2—13—|—Xﬂ.+y x=Tr[H2] y:Tr[H3] R

2 3

— We can diagonalize as H = QTAQ

— We can compute the matrix exponential as
eiaﬂ1

\V = QT eXp[IaA]Q _ QT alak QT
p 1alhi+dy)

— This method needs some care when a pair of the eigenvalues nearly
degenerates. To avoid loss of significant digit in the computetion some
special formula should be used.



Backups

(2) method based on Taylor expansion.

— Any matrix exponential are defined as

8

V =expliaH |=
=0
— We can truncate the series at
N p j Nexp
_ o aH
V =expliaH |~ Z ‘ <e
=0 |\Iexp!

— However |aH|>1 case the loss of significant digit occurs when
computing the series even if we use Horner’s method.

— We make use of the ideintity: V=1
; 2™ do J_ exp’! 1
expliaH |=| ex laH
PUAR = &XP) 2 V=1+2hy

J
enddo



Backups

* (2) method based on Taylor expansion.

— We make use of the ideintity:
: 2"
expliaH |= [exp{l;l:l D

— Divide and Squaerd method.

: laH| 1
., determin m s.t. |— <E
— 12%-14% order expansion
s sufficient for th . laH
is sufficien .or e approx V :Approx[exp{ _ } Nexp :12N14j
However this part can be 2
further economized as follows. do j=1m
V =V*

enddo



Backups

* (2) method based on Taylor expansion.

— From the characteristic polynomial, we have

det[H - A]=-2 +x1+y x=Tr[2HZ], =Tr[:3] R
— Cayley-Hamilton theorem leads
~H°+xH+y=0

— Thus any analytic function of H (f(H)) should have the following form.
f(H)=c,H*+cH +c,

— These coefficients {c_i} are computed via a kind of modulo
computation for polynomial.

f(H)=> fH =c,H*+cH+c, mod H*—xH -y

=



Backups
e (2) method based on Taylor expansion.
— Instead of doing modulo computation for infinite series we compute

HI=d,""H?+d,""H +d,"” mod H*-xH -y

— {d’s} are computed as follows,

%
— Define the 2" order polynomial of H as a vector expressed by the

coefficients.

d ()
0
{do(J)’dl“)’dz(J)}: dl(J) o dO(J) +d1(J)H +d2(J)H 2 _ H ]
€))
d2 This is a coefficient domain

representation of a su(3) matrix
function.

— We can evaluate next HA(j+1) from using the Cayley-Hamiton theorem.
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Backups
(2) method based on Taylor expansion.

— Instead of doing modulo computation for infinite series we compute
H'=d,""H?+d,""H +d,"” mod H®-xH -y

Hi% =g, 0% 1 d 0P 1d 0PH? = H x(do”)+d1(”H +d,VH 2)
:do(j)H +d1(j)H2+d2(j)H3fydz(j)-l—(do(j)-l-Xdz(j))H +d1(j)H2

(j+1) (J) (J)
d, yd, y dg
g = d1(1+1) _ do(l)+xd2(J) ~1 X dl(J) —HdW
(j+1) (1) (J)
d2 dl 1 d2
— Thus we have 1




Backups

(2) method based on Taylor expansion.

— The matrix exponential is now expressed as

> (iaH) & (ia) (. . | |
eXp[iaH]:Z@:Z‘d(lj\') (dZ(J)H2+d1(J)H +d0(1))
j=0 . j=0 J-




Backups

* (2) method based on Taylor expansion.

— The computation of eXp[iaH j]d(o) is much easier and
economical than V = exp[i aH] using Taylor series,

~—

because H isreal and sparse. And we need a vector multiplied form
of Hy in this representation. Finally we have

V =expliaH]=e,H? +e,H +e, =(L,H,H?

Nowp (i 21 J (0 d® =(1,0,0)
6 =expliaH ' @ ~ Zp('aH? d ] #(0()’ 9
j=0 JI e :d
do j=N_ 1-
- Tr[H? Tr[H® P
H=|1 = [2 ], y= [3]eR IR P R
1 e :d( ) ‘|‘—_ He
J
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