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1. Lattice Field Theory? 
• For example: 
• Standard Model 

– QCD:  Strong interaction, Hadrons <= quarks, gluons 
– Glashow-Weinberg-Salam: Electroweak 

• QED:      electromagnetic interaction:  charged particles, photon 
• Weak interaction:   Z,W bosons, leptons,… 
• Higgs mechanism 

• These are based on Quantum field theory (QFT). 
– Perturbative analysis using the coupling constant 

expansion. 
– Rely on the smallness of the coupling. 

• QCD: at low-energy, coupling expansion fails. 
– Non-preturbative analysis is required. 
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• To understand the nature of the strong 
interaction among Hadrons from the dynamics of 
quarks and gluons, Quantum Chromodynamics 
(QCD) has been introduced and investigated. 

• QCD is well under stood in the high-energy 
experiments where the asymptotic-free nature of 
the coupling constant of QCD enables us the 
perturbative  expansion analysis. 

• Howerver, at low-energy, the perturbative 
analysis fails due to the large coupling constant. 
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• The lattice field theory is one of  the non-
preturbative analysis method. 

• Lattice QCD has been used and developed to 
understand the low-energy nature of Hadrons. 

• The various technique for lattice field theory is 
common and also has been used in LQCD. 

• In this lecture I would like to give some lattice 
technique and numerical algorithms for LQCD 
as an example of lattice field theories.  
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2. Path integral and lattice field theory 

• Feynman's path integral quantization is a 
fundamental basis for lattice field theory. 

• Euclidean field is also required to introduce 
well defined (numerically calculable) path 
integral formulation. 

• Lattice QCD is based on SU(3) gauge theory 
defined on a Euclidean 4Dim lattice universe. 
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2-1 Feynman’s path integral quantization 
• A quantum field theory : 

–            :  Action. 

–             : Field to be quantized (real scalar for simplicity).  

–             : space-time corrdinate. 

• Feynman’s path integral quantization. 
– Generating functional for Green’s functions (correlation func.) 

 

 

 

– N-point Green’s function of the theory. 

 

 

 

 

 

 

– We can extract various information from  Green’s functions basically…. 
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• However, the analytic integration of the path-integral is 
not always available except for free field theories. 

• The integral also has a difficulty  in Minkowski metric.  
The integral is a kind of Fresnel integrals and the 
integrant oscillates.  This may prevents us to evaluate it 
numerically…. 

• In order to evaluate this integral: 
– Introduce Euclidean path integral 

• Needs validation : Minkowski Euclid relation. 
Experimentally or constructive field theory, 
Osterwalder-Schrader axioms… 

– Discretize Space-Time =>  Lattice space-time 
• Needs validation: lattice spacing error 

• Here we assume:   
– there is a Euclidean field theory for a target Minkowski field theory. 
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2-2 Euclidean path integral 
–             : Euclidean action. 

–             :  Euclidean field.   Real valued. 

–                                : Euclidean 4D coordinate. 
• They are usually obtained from Minkowski versions after Wick’s rotation.  

 

• Generating functional for Euclidean Green’s functions. 

 
 

– If the Euclidean action is real valued, the integral has a better property than the 
Mikowski version.   A chance to evaluate them by numerical integration? 

– The physics information can be obtained from Euclidean Green’s functions by inverse 
Wick’s rotation or  investigating the tau dependence.  
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2-3 Euclidean path integral and lattice 

• Path integral measure 
– Integration by field shape (configuration) 

 

 

 

– Euclidean space time,                     is continuous. Difficult to 
maintain               for numerical evaluation. This will cause 
UV divergences. The renormalization and regularization is 
required. 

– Introduce the lattice discretization: 
• As a regularization. 

• As a well defined integration measure. 
– Degree of Freedom (DoF) is still finite. IR regulator by limiting system size 

(finite volume). 
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• Lattice 

 

 

 

 
 

• Lattice regularized path integral  
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• Lattice regularized path integral 

 

 

 

 
• How to evaluate this integral? 

– Similar to Canonical partition function in statistical mechanics. 

– Dimension of          is very large. For real scalar on a 4D lattice with the size 
(16x16x16x16),   

 

– If the weight  exp(…) is real and non-negative, we can evaluate it using 
Monte Carlo Methods. 

– Note:  Lattice action should be designed appropriately. (based on Symmetry, spectrum, 
relation Minkowski Euclid, …..) 

– When no real and non-negative weight is derived,  we encounter the sign problem in the 
Monte Carlo method.  Ex. System in finite density. 
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2-4 Integration using Monte Carlo 
Methods. 

• Monte Carlo 
– Ex. Integration with a single variable. 

 

 

 

– Rectangular integration 
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• Random sampling 
(1) Pick up a number                  from the interval               randomly. 

(2) Evaluate function  as                        . 

(3) Repeat (1)-(2)           times, then we get   samples                               .   

     We can estimate the integral as  

 
 

 

     The random number sequence                              has a uniform 
distribution in [a,b].   This means that the random variable x has the 
following  probability density:  

 
 

     Thus the statistical averaging for                          means 
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• A defect and inefficient property of the simple 
rectangular and random sampling integration. 
– If the target function f(x) has a keen peak with narrow width W,   

   The integration may fail until 

 

 

     is satisfied.  

    One sample in the peak. 

    Most of samples are unimportant. 

    sample ratio =  1/N. 

– In multi dimensional integrations,  the situation becomes more worse. 

– D-dimension 
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• Importance Sampling (Monte Carlo) 
– As seen before uniform sampling is not effective if the integrant has 

keen peaks. 

– Euclidean Path-integral is a kind of huge-multi dimensional integration. 

– The integral has narrow peaks in general, and the highest peak 
corresponds to the classical solution of the system. 

 

 
 

– In the classical limit (h->0), the dominant contribution to the integral 
comes from: 

 

 

– This corresponds to the stationary (or minimum) solution of action: 

 

– We know that the classical solution gives a narrow peak for exp(-S) 
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• Importance Sampling (Monte Carlo) cont’d 

 

 
• To integrate this function f(x):  

– If we can generate a sequence / ensemble {x} so that the statistical 
histogram/distribution of {x}  is w(x). 

– We have 

 

 
 

– The error behaves as 1/Sqrt(N) 

 

 

– The error is minimized when f(x)=w(x). 

– The error behaves as 1/Sqrt(N) even for the multi-dimensional 
integrations. 
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• Importance sampling for Euclidean path-
integrals. 
– For the two-point correlation function: 

 

 

 

– Generate a sequence/ensemble: 

 

– So that the sample has the distribition : 

– The two-point correlation function can be estimated as: 

 

– The error behaves as 1/Sqrt(N). 

– Note: the dimension of the integral/      is 
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• Markov Chain Monte Carlo (MCMC)                      
(general description) 

• A simple random sampling generation is not effective as seen before. 

• A non-random generation is required. 

– MCMC  Set up.  There exisit 

 

 
 

– MCMC adds a new sample to the sequence as 

 
Then add the new sample to the sequence. 

 
 

Where  
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• Markov Chain Monte Carlo (MCMC)  cont’d 

• How to generate the desired distribution from the transition P?  

– Perron-Frobenius theorem. 
• P(φ|φ’) transition probability can be treated as a matrix element 

which index takes a value of state number.   

 

 

 

• The matrix P satisfies  

 
 

• P   is called a positive matrix. 

– Perron-Frobenius theorem: 
• Any positive real matrix has a unique and largest eigenvalue (with 

=1), and associated eigenvector with positive components. 
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• Markov Chain Monte Carlo (MCMC)  cont’d 

• Using Perron-Frobenius theorem, we have 
–  For a given initial state: 

 
 

 

– k-step MCMC corresponds to 

 
 

 

– The Perron-Frobenius theorem says that 

 
 

– The convergence to the fixed distribution is usually exponential. After 
many MCMC step the distribution is almost identical to the maximum 
eigen vector w. 

– If s has the desired distribution we can generate the desired sequence. 
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• Markov Chain Monte Carlo (MCMC)  cont’d 

– (1)  Generate initial state. 

– (2)  If the system is in the j-th state,  generate i-th state with 
the probability Pij 

– (3)  Add the new state to the ensemble. 

– (4)  Goto (2) 
• Where we assumed that the state is discrete and countable,  P is a positive 

matrix. 

• Extension to Non-negative matrixes, and continuum state is also possible. 

• The property that the existence of  a unique real maximam eigenvalue and 
positive eigenvector of  the theorem still holds, but some special properties 
are required on P. Here I omit the details of the extension.  (irreducible,…) 

• Now the problem to the path-integral is  

– How to construct                   so that the maximum 
eigen vector is                                ?  
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2-5 Detailed Balance Condition 
• How to construct  Transition probability                 to make a 

desired distribution                                      ? 

• One sufficient condition is the so called detailed balance 
condition. 
• Recalling that the fixed point distribution is a eigenvector of the transition 

probability with real unit eigenvalue. 

 

 

 
 

• The detailed balance condition requires 
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• Some MCMC examples that satisfies the 
detailed balance condition. 

• (1) Metropolis-Hastings algorithm                      
(Metropolis et al. 1953, Hasitings 1970) 

 

 

 

 

 

 

 

 

• Where 
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• This algorithm is equivalent to the following 
transition probability 

 

 

 

• This transition probability matrix satisfies the detailed balance 
condition. 

• A More concrete example for Metropolis algorithm. 

– Ising model with 2 spins. 
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• Ising model with 2 spins. 

 
 

• To compute the spin average and spin correlation 

 

 

 
 

• We generate the ensemble                                           with the 
distribution 

 

• Then we can estimate the squared spin average by 
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• We have only 4 states. 

 

 

 

 

 
 

• The weight(probability) is calculable (C is the normalization const = Z(0)) 

 

 

 

 

• We can generate this distribution with the Metropolis 
Algorithm 
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• Metropolis algorithm for the Ising model with 
2-spins. 

 

 

 

 

 
 

 

• Then we obtain ensemble:  

 

• Corresponding Fortran Program:  
– [http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/2SiteIsingMetropolis.tar.gz] 
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• Corresponding Fortran Program 
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Metropolis test 

Candidate generation 



• Results 
– Weight histogram 
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– Beta dependence of Weight 
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• Results 
– Spin average ensemble history 
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First 500 samples are plotted. 
Random walking in the state space (4states) 
Spin average can take one of the values (-1,0,1) 
(spin average)=0 can occur for state #2 and #4. 
(spin average)=+1 occurs for state #1. 
(spin average)=-1  occurs for state #3. 
As increasing beta,  the state stays at state #2 
or #4. spin average = 0 states. 
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• Results 
– Spin correlation ensemble history 
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First 500 samples are plotted. 
Random walking in the state space (4states) 
Spin corr. can take +1 or -1. 
(spin corr.)=+1 can occur for state #1 and #3. 
(spin corr)= -1 occurs for state #2 and #4. 
At small beta population of +1 and -1 is almost 
same. 
As increasing beta,  state with (spin corr.)=-1 
dominates.  (state #2 and #4) 



• Results 
– Spin average expectation value 
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Averaging the history data we obtain zero. This is consistent with the 
theoretical one. 
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• Results 
– Spin correration expectation value 
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Averaging the history data we obtain –Tanh(Beta). This is consistent with 
the theoretical one. 
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• Difficulties in (Naive) Metropolis Algorithm 
– As seen before the new candidate state(configuration) is really added when 

the Metropolis test accept. 

– In Statistical Mechanics  (Canonical ensemble),  the exponent of the weight is 
the energy of the target system. 

– The acceptance ratio is governed by the Energy difference 

 

 

 

– When          is negative, Metropolis test always accept the candidate  (        ).  

– When          is positive, the acceptance probability decreases 
as                                 . 

– When the target system has a huge number of d.o.f., the random sampling 
method to generate the candidate state almost always large positive number 
for        .  This is typical in statistical mechanics and huge multiple dimension 
integration.      

– Candidate generation method with small energy difference is important. 

– See also 2D-Ising model. (Heat-bath (Gibbs sampler) algorithm) 
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• Most of MCMC algorithms make use of the 
Metropolis algorithm and its extension. 
– For LQCD, the system has continuous variables (states). 

– Naïve Metropoils algorithm may fail due to the large energy differece. 

• (2)Hybrid Monte Carlo (HMC) algorithm                        
(Scalatar, Scalapino, Sugar, PRB34(1986); Duane, Kennedy Pendleton, Roweth, 
PL195B(1987)) 

– This algorithm is useful when the variables are continuous. 

– This is an extension of the Metropolis algorithm with 
better candidate generation. 

– The HMC algorithm is a de fact standard algorithm for 
LQCD with dynamical quarks. 

– In the next lecture I will describe the details of the HMC 
algorithm. 
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Problems 
(1) Check that the detailed balance condition is a sufficient condition of the 

eigenvector (stationary distribution) of the transition matrix.  [page 22]  

(2) Check that the transition matrix for the Metropolis algorithm satisfies the 
detailed balance condition. [page 24]. 

(3) Complete the transition matrix for  the Ising model with 2-spins in a 4x4 
matrix form and Check the eigenvector. [page 24-33] 

 
 

(4) Get and compile the Ising model with 2-spins program.  Check the result 
numerically. [page 24-33]  (this needs gfortran and gnuplot on Linux) 

(5) Evaluate the averaged acceptance rate of the Metropolis test when the 
energy difference is a random variable from the Gaussian distribution with 
mean=     and variance=                  . [Hint: Complementary error function] 

 

 
 

 

(6) [Advanced] Consider a N-sites 1D Ising model with periodic boundary 
condition. 
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Backup (2-site Scalar model) 
• For a continuous state model. I show the 2-site scalar model. 

(a toy model for lattice scalar field theories) 
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• Metropolis algorithm 

 

 

 

 

 
 

 

 
 

• We do not have a finite distribution at beta=1 with this model. 

• We can not use uniform sampling for candidate generation because                           . 
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• Fortran program:  
       [http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/2SiteScalarMetropolis.tar.gz] 

– 10,000,000 samples are generated.  But we save 10,000 samples with interval 100.  We 
use var=1 for candidate generation. 

• State weight/histogram generated via Metropolis algorithm 

2013/1/31 
Asian School on Lattice Field Theory 

2011@TIFR 
39 

Theoretical Measured 



• State weight/histogram generated via Metropolis algorithm 
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• State weight/histogram generated via Metropolis algorithm 
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• State weight/histogram generated via Metropolis algorithm 
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• State weight/histogram generated via Metropolis algorithm 
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• Spin average and Spin correlation history generated via Metropolis 
algorithm 
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Spin average 

Spin correlation 



 

• Beta dependence of Spin average and Spin corr. 
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Spin correlation Spin average 

All programs are NO WARRANTY. 



• Metropolis algorithm transition probability for   
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Problem answers 

• (1) 

 

• (2) 

 

 

 

 

 

• Similarly  
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• (3)  I show beta>0 case only. 

 

 
 

• Eigenpairs 

 

 

 

 

• Thus MCMC converges to the desired distribution. 
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The convergence rate is governed by the difference between 1 and next largest eigenvalue.  



• (5) 

• (complementary) error functions: 

 

 

 

• Averaging acceptance probability: 
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History 

• 2013/01/31:  Metropolis test probability is 
corrected.  
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